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Swapping (Paging)
● Paging: [OS capability of] using a 

secondary storage to store and retrieve 
data
– With RAM being primary
– Storing and retrieving happens on a per-page 

basis
●  Page

– Uni-size storage block, usually of size 2n 
– Corresponds to a single record in page table

● Paging is only possible with VM enabled
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Swapping
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Embedded device objectives
● [very] limited RAM
● [relatively] slow storage

– Using swap will hurt performance
● [relatively] small storage

– Hardly is there a place for big swap
● Flash chip used as a storage

– Swap on flash wears it out fast

Intro>



Swapping in Embedded
● Should be applicable

– Constrained RAM
● But is isn't sometimes

– Constrained storage 
● May have adverse effects

– Flash storage faster wear-out
– Longer delays if the storage device is slow

● There has to be a way out...

Intro> 



Swapping optimization: zswap
● zswap: compressed write-back cache for 

swapped pages
– Write operation completion signaled on write-to-

cache completion
● Compresses swapped-out pages and 

moves them into a pool
– This pool is dynamically allocated in RAM

● Configurable parameters
– Pool size
– Compression algorithm

Smarter swapping> 



zswap backend: zbud
● zbud: special purpose memory allocator

– allocation is always per-page
● Stores up to 2 compressed pages per 

page
– One bound to the beginning, one to the end
– The in-page pages are called “buddies”

● Key characteristics
– Simplicity and stability

● zbud is the allocator backend for zswap

Smarter swapping> 



RAM as a swap storage

● Compression required
– No gain otherwise
– But increases CPU load

● Implementation of a [virtual] block 
device required

● Careful memory management is 
required
– Should not use high-order page 

allocations

Smarter swapping> 



ZRAM

● Block device for compressed data 
storage in RAM
– Compression algorithm is configurable
– Default algorithm is LZO
– LZ4 is used mostly

● Usually deployed as a self-contained 
swap device
– The size is specified in runtime (via sysfs)
– Configuration is the same otherwise

Smarter swapping> 



ZRAM vs Flash swap

● Compared on Carambola (MIPS24kc)
– Details on the configuration will follow

● Standard I/O measurement tools
– 'fio' with 'tiobench' script

● Results
– Average read speed: 730 vs 699 (kb/s)
– Average write speed: 180.5 vs 172 (kb/s) 

● Difference is larger where RAM is faster

Smarter swapping> 



zsmalloc: ZRAM backend
● Special purpose pool-based memory 

allocator
●  Packs objects into a set of non-

contiguous pages
– ZRAM calls into zsmalloc to allocate 

space for compressed data
– Compressed data is stored in scattered 

pages within the pool

Smarter swapping> 



zsmalloc and zbud compared

zsmalloc zbud

Compression ratio High (3x – 4x) Medium/Low (1.8x – 2x)

CPU utilization Medium/High Medium

Internal 
fragmentation

yes no

Latencies Medium/Low Low

z­­­ in detail> 



zpool: a unified API 
● Common API for compressed memory 

storage
● Any memory allocator can implement 

zpool API
– And register in zpool

● 2 main zpool users
– zbud
– zsmalloc

z­­­ in detail> 



zswap uses zpool API!
● zswap is now backend-independent

– As long as the backend implements zpool API
● zswap can use zsmalloc

– Better compression ratio
– Less disk/flash utilization

z­­­ in detail> 



What if ZRAM used zbud?
● Persistent storage is not used anyway

– Compression ratio may not be the key
● No performance degrade over time
● Less dependency on memory subsystem
● CPU utilization may get lower
● Throughput may get higher
● Latencies may get lower

ZRAM moving forward> 



Why can't ZRAM use zbud?
● zbud can't handle PAGE_SIZE 

allocations
– Uses small part of the page for internal 

structure
● Called struct zbud_header  

– Easy to fix: it can go to struct page

● ZRAM doesn't use zpool API
– zsmalloc API fits zpool API nicely
– Easy to fix: just implement it

ZRAM moving forward> 



Allow ZRAM to use zbud
● An initiative taken by the author

– Allow PAGE_SIZE allocations in ZBUD
– Make ZRAM use zpool

● Two mainlining attempts
● https://lkml.org/lkml/2015/9/14/356 [1]
● https://lkml.org/lkml/2015/9/22/220 [2]

– Faced strong opposition from ZRAM authors
– Vendor neutrality questionable

● More attempts to come

ZRAM moving forward> 
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New better allocator?
● Requirements

– Higher compression ratio than that of zbud
– More determinism than in zsmalloc
– Less fragmentation issues than in zsmalloc

● Idea
– Do like zbud, but up to 3 objects per page

● Implementation
– Z3fold: in mainline since 4.7

ZRAM moving forward> 



Key features
● Up to 3 objects per page

– Compression ratio up to 3x
–

–

● Objects can not cross page boundary
– More determinism than in zsmalloc
–

● Implementation
– Z3fold: in mainline since 4.7

z3fold: new allocator> 



Prerequisites
● Use fio for performance measurement

– Written by Jens Axboe
– Flexible and versatile

● EXT4 file system on /dev/zram0
– 50% full

● A flavor of fio 'enospc' script
– Adapted for smaller block device (zram)

● 40 iterations per z--- backend 
(zbud/zsmalloc)

Measurements> 



Test device 1
● Sony Xperia Z2

– MSM8974 CPU
● 2.3 GHz Quad-Core KraitTM

– 3 GB RAM
● Cyanogenmod build as of Jan 15, 

2016 (12.1)
– A flavor of Android 5.1.1
– Custom 3.10-based kernel

Measurements> 



ZRAM performance: Android
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Outcome: zbud clearly outperforms



ZRAM latency: Android
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Outcome: zbud  outperforms again
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ZRAM performance: Android

Okay what happens in the 
long run, does zbud remain 

superior to zsmalloc?

Measurements> 



ZRAM performance: Android

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

zsmalloc zbud

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

zsmalloc zbud

Outcome: yes it does.
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Test device 2
● Intel Minnowboard Max EVB

– 64bit AtomTM CPU  E3815  @ 1.46GHz
– DDR3 2 GB RAM
– Storage 4 GB eMMC

● Debian 8.4 64 bit
– Custom 4.3-based kernel

Measurements> 



ZRAM performance: x86_64
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Outcome: obvious.



ZRAM latency: x86_64
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Outcome: zbud is better again.



Test device 3
● Carambola 2

– MIPS32 24Ke
– Qualcomm/Atheros AR9331 SoC
– 400 MHz CPU 
– 64 MB DDR2 RAM
– Storage 512 MB NAND flash

● OpenWRT
– Git as of Jan 15, 2016 
– Custom 4.3-based kernel

Measurements> 



ZRAM performance: MIPS32
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Outcome: roughly equal.



ZRAM latency: MIPS32
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Outcome: more stability with zbud.



Wrap-Up
● Compressed RAM swap is a good idea

– Many systems can benefit from it
● Two implementations mainlined

– Zswap: mostly targeting big systems
– ZRAM: mostly for embedded / small systems

● Each has its own backend
– zsmalloc for ZRAM, zbud for zswap

● New backend: z3fold
– Evaluation and measurements ongoing



Conclusions
● Compressed RAM swap is the way out 

for embedded systems
● ZRAM is a better fit for embedded than 

zswap
● ZRAM backend choice should not be 

only zsmalloc
– Zbud can fit nicely in special cases
– Z3fold is a good alternative in most cases



swapping completed.

Questions?
mailto: vitalywool@gmail.com
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