
 Swapping and
embedded:

compression is the key

Vitaly Wool
 Embedded Linux Conference Europe 2016

Swapping (Paging)
● Paging: [OS capability of] using a

secondary storage to store and retrieve
data
– With RAM being primary
– Storing and retrieving happens on a per-page

basis
● Page

– Uni-size storage block, usually of size 2n
– Corresponds to a single record in page table

● Paging is only possible with VM enabled

Intro>

Swapping

Intro>

Embedded device objectives
● [very] limited RAM
● [relatively] slow storage

– Using swap will hurt performance
● [relatively] small storage

– Hardly is there a place for big swap
● Flash chip used as a storage

– Swap on flash wears it out fast

Intro>

Swapping in Embedded
● Should be applicable

– Constrained RAM
● But is isn't sometimes

– Constrained storage
● May have adverse effects

– Flash storage faster wear-out
– Longer delays if the storage device is slow

● There has to be a way out...

Intro>

Swapping optimization: zswap
● zswap: compressed write-back cache for

swapped pages
– Write operation completion signaled on write-to-

cache completion
● Compresses swapped-out pages and

moves them into a pool
– This pool is dynamically allocated in RAM

● Configurable parameters
– Pool size
– Compression algorithm

Smarter swapping>

zswap backend: zbud
● zbud: special purpose memory allocator

– allocation is always per-page
● Stores up to 2 compressed pages per

page
– One bound to the beginning, one to the end
– The in-page pages are called “buddies”

● Key characteristics
– Simplicity and stability

● zbud is the allocator backend for zswap

Smarter swapping>

RAM as a swap storage

● Compression required
– No gain otherwise
– But increases CPU load

● Implementation of a [virtual] block
device required

● Careful memory management is
required
– Should not use high-order page

allocations

Smarter swapping>

ZRAM

● Block device for compressed data
storage in RAM
– Compression algorithm is configurable
– Default algorithm is LZO
– LZ4 is used mostly

● Usually deployed as a self-contained
swap device
– The size is specified in runtime (via sysfs)
– Configuration is the same otherwise

Smarter swapping>

ZRAM vs Flash swap

● Compared on Carambola (MIPS24kc)
– Details on the configuration will follow

● Standard I/O measurement tools
– 'fio' with 'tiobench' script

● Results
– Average read speed: 730 vs 699 (kb/s)
– Average write speed: 180.5 vs 172 (kb/s)

● Difference is larger where RAM is faster

Smarter swapping>

zsmalloc: ZRAM backend
● Special purpose pool-based memory

allocator
● Packs objects into a set of non-

contiguous pages
– ZRAM calls into zsmalloc to allocate

space for compressed data
– Compressed data is stored in scattered

pages within the pool

Smarter swapping>

zsmalloc and zbud compared

zsmalloc zbud

Compression ratio High (3x – 4x) Medium/Low (1.8x – 2x)

CPU utilization Medium/High Medium

Internal
fragmentation

yes no

Latencies Medium/Low Low

z­­­ in detail>

zpool: a unified API
● Common API for compressed memory

storage
● Any memory allocator can implement

zpool API
– And register in zpool

● 2 main zpool users
– zbud
– zsmalloc

z­­­ in detail>

zswap uses zpool API!
● zswap is now backend-independent

– As long as the backend implements zpool API
● zswap can use zsmalloc

– Better compression ratio
– Less disk/flash utilization

z­­­ in detail>

What if ZRAM used zbud?
● Persistent storage is not used anyway

– Compression ratio may not be the key
● No performance degrade over time
● Less dependency on memory subsystem
● CPU utilization may get lower
● Throughput may get higher
● Latencies may get lower

ZRAM moving forward>

Why can't ZRAM use zbud?
● zbud can't handle PAGE_SIZE

allocations
– Uses small part of the page for internal

structure
● Called struct zbud_header

– Easy to fix: it can go to struct page

● ZRAM doesn't use zpool API
– zsmalloc API fits zpool API nicely
– Easy to fix: just implement it

ZRAM moving forward>

Allow ZRAM to use zbud
● An initiative taken by the author

– Allow PAGE_SIZE allocations in ZBUD
– Make ZRAM use zpool

● Two mainlining attempts
● https://lkml.org/lkml/2015/9/14/356 [1]
● https://lkml.org/lkml/2015/9/22/220 [2]

– Faced strong opposition from ZRAM authors
– Vendor neutrality questionable

● More attempts to come

ZRAM moving forward>

https://lkml.org/lkml/2015/9/14/356
https://lkml.org/lkml/2015/9/22/220

New better allocator?
● Requirements

– Higher compression ratio than that of zbud
– More determinism than in zsmalloc
– Less fragmentation issues than in zsmalloc

● Idea
– Do like zbud, but up to 3 objects per page

● Implementation
– Z3fold: in mainline since 4.7

ZRAM moving forward>

Key features
● Up to 3 objects per page

– Compression ratio up to 3x
–

–

● Objects can not cross page boundary
– More determinism than in zsmalloc
–

● Implementation
– Z3fold: in mainline since 4.7

z3fold: new allocator>

Prerequisites
● Use fio for performance measurement

– Written by Jens Axboe
– Flexible and versatile

● EXT4 file system on /dev/zram0
– 50% full

● A flavor of fio 'enospc' script
– Adapted for smaller block device (zram)

● 40 iterations per z--- backend
(zbud/zsmalloc)

Measurements>

Test device 1
● Sony Xperia Z2

– MSM8974 CPU
● 2.3 GHz Quad-Core KraitTM

– 3 GB RAM
● Cyanogenmod build as of Jan 15,

2016 (12.1)
– A flavor of Android 5.1.1
– Custom 3.10-based kernel

Measurements>

ZRAM performance: Android

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

zsmalloc zbud

Measurements>

Outcome: zbud clearly outperforms

ZRAM latency: Android

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

51
52

53
54

55
56

57
58

59
60

61
62

63
64

65
66

67
68

69
70

71
72

73
74

75
76

0

10000

20000

30000

40000

50000

60000

70000

80000

zsmalloc zbud

Outcome: zbud outperforms again

Measurements>

ZRAM performance: Android

Okay what happens in the
long run, does zbud remain

superior to zsmalloc?

Measurements>

ZRAM performance: Android

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

zsmalloc zbud

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

zsmalloc zbud

Outcome: yes it does.

Measurements>

Test device 2
● Intel Minnowboard Max EVB

– 64bit AtomTM CPU E3815 @ 1.46GHz
– DDR3 2 GB RAM
– Storage 4 GB eMMC

● Debian 8.4 64 bit
– Custom 4.3-based kernel

Measurements>

ZRAM performance: x86_64

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

zsmalloc zbud

Outcome: obvious.

ZRAM latency: x86_64

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

zsmalloc zbud

Measurements>

Outcome: zbud is better again.

Test device 3
● Carambola 2

– MIPS32 24Ke
– Qualcomm/Atheros AR9331 SoC
– 400 MHz CPU
– 64 MB DDR2 RAM
– Storage 512 MB NAND flash

● OpenWRT
– Git as of Jan 15, 2016
– Custom 4.3-based kernel

Measurements>

ZRAM performance: MIPS32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
0

5000

10000

15000

20000

25000

30000

zsmalloc zram

Measurements>

Outcome: roughly equal.

ZRAM latency: MIPS32

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

51
52

53
54

55
56

57
58

59
60

61
62

63
64

65
66

67
68

69
70

71
72

73
74

75

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

zsmalloc zbud

Measurements>

Outcome: more stability with zbud.

Wrap-Up
● Compressed RAM swap is a good idea

– Many systems can benefit from it
● Two implementations mainlined

– Zswap: mostly targeting big systems
– ZRAM: mostly for embedded / small systems

● Each has its own backend
– zsmalloc for ZRAM, zbud for zswap

● New backend: z3fold
– Evaluation and measurements ongoing

Conclusions
● Compressed RAM swap is the way out

for embedded systems
● ZRAM is a better fit for embedded than

zswap
● ZRAM backend choice should not be

only zsmalloc
– Zbud can fit nicely in special cases
– Z3fold is a good alternative in most cases

swapping completed.

Questions?
mailto: vitalywool@gmail.com

	Presentation TITLE
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

