HW isolation for automotive environment

BoF

Michele Paolino
m.paolino@virtualopensystems.com

AGL All Member Meeting 2016,
2016-09-07, Munich, Germany

http://www.tapps-project.eu/
Michele Paolino, Virtualization R&D software architect at Virtual Open Systems. He presented “ARM TrustZone and KVM Coexistence with RTOS For Automotive” at the ALS summit 2015 (June 1st, Tokyo)

Virtual Open Systems is a high-tech start-up company active in open source virtualization solutions and custom services for complex mixed-criticality automotive. In July 2016 the company announced VOSYSmonitor 1.0, a high performance certifiable ARMv8 monitor implementation.

This work is done in the context of the H2020 Trusted APPs for CPS (TAPPS) project (www.tapps-project.eu).
Recently a new set of automotive platforms have been released. All of them have in common:

- Powerful CPUs (e.g., quad core ARMv8) and GPU (hundreds of cores)
- Several GBs of RAM memory
- Support for advanced technologies for security (e.g., TrustZone), virtualization (extended CPU ISA), multimedia, etc.

How to use all this power?
Virtualization can be used to provide HW isolation (memory, interrupts, etc) and to achieve Electronic Control Unit (ECU) functions consolidation and portability. This BoF aims at:

- Continuing the discussion started on the AGL ML to the define AGL virtualization requirements, architecture, etc.
- Finding contributors from OEM, software and car manufacturer members
- Proposing to create a new AGL EG for virtualization
Virtualization enables the execution of different operating systems concurrently.

➢ Security and easy third party application support
➢ ECU consolidation (reduced hardware and wiring costs)
➢ Ease of software updates
➢ Migration and portability
Full Virtualization is the ability of a system to run different partitions concurrently with unmodified software. VMs that exploit the CPU virtualization extensions (i.e. ARM VE, Intel VT), are hardware isolated regarding:

- Memory
- Interrupts
- Exceptions

Notable examples of open source full Virtualization solutions are KVM and XEN.
Virtualization means also a set of new challenges for AGL:

- Mixed criticality environment with RT requirements
- Certification
- Security and trustworthiness of the software (device sharing, etc.)
- High performance and hardware acceleration virtualization (object recognition, DRM encoding, 3d acceleration, etc.)
Proposed Requirements and Architecture

With the intent of fostering the discussion and find a solution agreed by the AGL community, a new architecture for the AGL virtualization has been proposed, focusing on the below requirements:

- Single RTOS and single non critical environment running concurrently
- Single RTOS and multiple non critical environments running concurrently
- Multiple RTOSes and multiple non critical environments running concurrently
The proposed architecture targets Intel and ARMv8 architectures, and leverages on:

- CPU Virtualization extensions (Intel VT or ARM VE)
- Security Extensions (ARM TrustZone)
TrustZone safely runs two OSes by defining a secure operational mode completely isolated from the rest of the system:

- The two OSes are fully independent
 - if the IVI part crashes, the safety critical OS runs normally
- TrustZone implements a secure context switch mechanism through the TrustZone Monitor

![Diagram of TrustZone architecture](image)
The Monitor firmware in ARM TrustZone is of pivotal importance. It implements:

- Secure world boot
- S-EL1 payload dispatcher
- Secure/Normal world isolation Initialization
- SMC (Secure monitor Call) Handling
- PSCI for secondary core bring-up

ARM Trusted Firmware (open source) and VOSYSmonitor (certifiable) are examples of such implementation.
Virtualization is not enough to efficiently isolate safety critical systems.

- VENOM, CVE-2015-3456, is a security vulnerability in the QEMU virtual floppy drive
- It allows an attacker to escape from the VM isolation (step 1)
- VENOM could open access to the host and all other VMs, potentially giving adversaries significant elevated access to the adjacent systems (step 2)
Proposed architecture: Single RTOS/non critical environment

<table>
<thead>
<tr>
<th>ARMv8</th>
<th>Intel x86</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pros: easier certifiability, native execution of both Linux/RTOS (no virtual drivers needed), no virtualization overhead, isolation stronger than a hypervisor</td>
<td>Pros: certifiability, hypervisor isolation</td>
</tr>
<tr>
<td>Cons: Hypervisor needed to run multiple OSes in EL1</td>
<td>Cons: virtualization overhead, VMs can affect security of the RTOS</td>
</tr>
</tbody>
</table>

ARMv8
- TrustZone monitor
- EL0
- SEL0
- Linux/AGL
- RTOS
- EL1
- SEL1
- EL2
- EL3

Intel x86
- Hypervisor
- VMX root
- RTOS
- SEL0
- SEL1
- EL0
- EL1
- EL2
- EL3
- Linux/AGL
- Ring 0
- Ring 3
Proposed architecture: Single RTOS/multiple non critical environments

ARMv8

- **Pros**: Multiple OSes, if the hypervisor fails the RTOS is not affected, open source solutions available, no virt. overhead for RTOS
- **Cons**: virt. overhead for VMs, VMs can affect security of other VMs/hypervisor

Intel x86

- **Pros**: Multiple OSes, open source solutions available
- **Cons**: virt. overhead for VMs and RTOS, VMs can affect security of the RTOS, other VMs and of the Hypervisor
Proposed architecture: Multiple RTOSes/non-critical environments

Pros:
- Multiple RTOSes strongly isolated by non-critical services, short certification chain (Monitor+RTOS),
- Single point of failure in the Monitor (e.g., ATF is ~20K LOC)

Cons:
- Single point of failure in the hypervisor (e.g., XEN is ~100K LOC)
AGL has a long way to go, in order to lead the introduction of virtualization in automotive.

- Requirements and use cases definition
 - when is it needed? which are the use cases of interest? what is it needed?
- Analysis of the SoA technologies and open source projects (KVM, QEMU, XEN, libvirt, etc)
 - Type 1 vs Type 2, comparison with other technologies such as containers, TrustZone, etc.
- Identify the potential extensions from open-source upstream projects according to the identified requirements
- Extensions development and integration in AGL
Conclusion

With this BoF a new EG for AGL virtualization has been proposed. The objective is to find 5/10 engineers interested in contributing and participating to the discussion.

➢ Comment/propose changes in the wiki page https://wiki.automotivelinux.org/bof-hypervisor
➢ Submit your comments/questions by email in the AGL mailing list or through the #automotive IRC channel
➢ Contact me at m.paolino@virtualopensystems.com

If you are one of them, you can easily join the discussion:
Thank you!