
Improve VNF safety with
Vhost-User/DPDK IOMMU support

No UIO anymore!

Maxime Coquelin
Software Engineer
KVM Forum 2017

Improve VNF safety with Vhost-User/DPDK IOMMU support2

AGENDA

● Background
● Vhost-user device IOTLB implementation
● Benchmarks
● Future improvements
● Conclusion - Questions

Background

Improve VNF safety with Vhost-User/DPDK IOMMU support4

Why do we need IOMMU support?
Background

Current status (i.e. without IOMMU support):
● Use of UIO or VFIO with enable_unsafe_noiommu_mode = 1

→ Taints the Kernel, require rebuild with some distros
→ Use of GPA (guest physical addresses) for virtqueues and buffers

● Vhost-user backends mmaps all the guest memory with RW permissions
● DPDK app in guest could make Vhost to access memory the app hasn’t access to

→ The guest app could pass random GPA as descriptor buffer address
→ Vhost backend overwrites random memory with packet content, or leaks
random memory as a packet.

Improve VNF safety with Vhost-User/DPDK IOMMU support5

IOMMU support in guest
Background

PCIe device driver
Virtio PMD (v16.11)

VFIO

IOMMU driver

User

Kernel

IOMMU Framework

PCIe device driver

Virtio-net (v4.6)

DMA Framework

iommu_map()

ioctl(..., VFIO_IOMMU_MAP_DMA, ...)

dma_map_sg()

(struct dmap_ops).map_page()(struct iommu_ops).map()

Guest

Improve VNF safety with Vhost-User/DPDK IOMMU support6

Static vs. dynamic mappings
Background

We consider two types of DMA mappings
● Dynamic mappings (Kernel/Virtio-net driver)

→ At least one dma_map()/dma_unmap() per packet
→ At least one IOTLB miss/invalidate per packet

● Static mappings (DPDK/Virtio PMD)
→ Single iommu_map/unmap() for all the memory pool at device probe/remove
→ Only IOTLB misses the first time pages are accessed

Improve VNF safety with Vhost-User/DPDK IOMMU support7

vIOMMU support in Qemu
Background

● Emulated IOMMU devices implementations in QEMU
→ x86 and PowerPC supported, ARM on-going
→ Platform-agnostic Virtio-IOMMU device spec being discussed

● Provides IO translation & device isolation as physical IOMMUs do
● Generic IOTLB/IOMMU API provided in QEMU

→ get IOTLB entry from (IOVA, perm)
→ IOMMU notifiers (MAP/UNMAP)

Improve VNF safety with Vhost-User/DPDK IOMMU support8

vIOMMU support for Vhost backend dev in QEMU
Background

● Initially introduced with kernel backend
● Implements Address Translation Services (ATS) from PCIe spec

→ Using QEMU’s IOTLB/IOMMU APIs
● Vhost-backend changes

● Notify the backend for IOTLB invalidates
● Notify the backend for IOTLB updates
● Handle backend IOTLB miss requests

Improve VNF safety with Vhost-User/DPDK IOMMU support9

vIOMMU support for Vhost backend in kernel
Background

● Implements new protocol using Vhost-kernel chardev reads/writes
● Other vhost-kernel requests uses ioctls
● Required to be able to poll for IOTLB miss requests

● struct vhost_iotlb_msg message types
● VHOST_IOTLB_MISS : Request QEMU for an IOTLB entry
● VHOST_IOTLB_UPDATE : Update Kernel with a new IOTLB entry
● VHOST_IOTLB_INVALIDATE : Notify Kernel an IOTLB entry is now invalid

● Device IOTLB implemented in vhost kernel driver
● Relies on interval tree for better cache lookup performance → O(log(n))
● Dedicated cache for virtqueues metadata → O(1)

Vhost-user device IOTLB implentation

Improve VNF safety with Vhost-User/DPDK IOMMU support11

Vhost-user protocol update
Vhost-user device IOTLB implementation

● Goal : design as close as possible to vhost-kernel protocol
● Problem : IOTLB miss request requires slave initiated requests support

● But vhost-user socket only supports master initiated requests
→ Introduction of a new socket for slave requests

● Slave request channel
● VHOST_USER_PROTOCOL_F_SLAVE_REQ protocol feature
● VHOST_USER_SET_SLAVE_REQ_FD request to share new socket’s fd
● Re-use master’s message structure, with new requests IDs
● Only used by IOMMU feature for now

Improve VNF safety with Vhost-User/DPDK IOMMU support12

Vhost-user protocol update (cont’d)
Vhost-user device IOTLB implementation

● IOTLB protocol update (Since QEMU v2.10, Vhost-user spec for details)
● Master initiated : VHOST_USER_IOTLB_MSG

→ IOTLB update & invalidation requests
→ Same payload as vhost-kernel counterpart (struct vhost_iotlb_msg)
→ Reply-ack mandatory

● Slave initiated : VHOST_USER_SLAVE_IOTLB_MSG
→ IOTLB miss requests
→ Also using struct vhost_iotlb_msg as payload
→ Reply-ack optionnal

Improve VNF safety with Vhost-User/DPDK IOMMU support13

IOTLB miss/update sequence
Vhost-user device IOTLB implementation

PMD thread
Vhost-user

protocol thread
Main thread vCPU thread

DPDK QEMU

IOTLB miss req

IOTLB miss ack

(optional)

IOTLB update req

IOTLB update ack

Device IOTLB
cache insert

Slave channel

Master channel

Improve VNF safety with Vhost-User/DPDK IOMMU support14

IOTLB invalidate sequence
Vhost-user device IOTLB implementation

PMD thread
Vhost-user

protocol thread
Main thread vCPU thread

DPDK QEMU

IOTLB invalidate req

IOTLB invalidate ack

Device IOTLB
cache remove

Master channel

Guest unmap
trap

Improve VNF safety with Vhost-User/DPDK IOMMU support15

IOTLB cache implementation
Vhost-user device IOTLB implementation

● Device IOTLB cache implemented in Vhost-user backend
→ Avoid querying for every address translation

● Single writer, multiple readers to the IOTLB cache
● Writer : Vhost-user protocol threads (IOTLB updates/invalidates)
● Readers : PMD threads (IOTLB cache lookups)
● Great case for RCU! Prototyped and tested, but…

→ liburcu is LGPLv2, only small functions can be in-lined
→ Adds dependency to DPDK build
→ Some distros don’t ship liburcu

Improve VNF safety with Vhost-User/DPDK IOMMU support16

IOTLB cache implementation
Vhost-user device IOTLB implementation

● Fallback : readers-writers locks (rte_rwlock)
● Better than regular mutexes
● But read lock uses rte_atomic32_cmpset(), optimizations to reduce its cost :

→ Per-virtqueue IOTLB cache
→ Read lock taken once per packets burst

● Initial cache implementation based on sorted lists
● Not efficient, but enough with 1G pages.
● Need a better implementation for smaller pages

● Cache sized large enough not to face misses with static mappings
→ IOTLB cache evictions should only happen with buggy/malicious guests

Benchmarks

Improve VNF safety with Vhost-User/DPDK IOMMU support18

Physical → Virtual → Physical
Benchmarks

TE

Moongen/IXIA/...

DUT

VM

TestPMD
(macswap)

TestPMD
(io)

10G NIC

10G NIC

10G NIC

10G NIC

● PVP benchmark based on TestPMD
● IO forwarding on host side
● MAC swapping in guest to access packet header

● Setup information
● T-Rex + binary-search.py from lua-traffigen
● DUT

● E5-2667 v4 @3.20GHz (Broadwell)
● 32GB RAM @2400MHz
● 2 x 10G Intel X710

Improve VNF safety with Vhost-User/DPDK IOMMU support19

Physical → Virtual → Physical
Benchmarks

1G/1G hugepages 2M/2M hugepages
0

2

4

6

8

10

12

14

16

18

20

Base (DPDK v17.08)

+ IOTLB series, IOMMU=off

+ IOTLB series, IOMMU=on

M
p

p
s

● PVP reference benchmark with IOTLB series v2
● Parameters: 64B packets, 0.005% acceptable loss,

bidirectionnal testing (result is the sum)
● 2M/2M hugepages

● IOMMU off : No performance regression
● IOMMU on : ~25% degradation

→ IOTLB cache lookup overhead
● 1G/1G hugepages

● IOMMU on/off : No performance regression
→ Virtio PMD is the bottleneck

Improve VNF safety with Vhost-User/DPDK IOMMU support20

Micro-benchmark using Testpmd
Benchmarks

Guest -> host Host -> guest IO loopback
0

2

4

6

8

10

12

14

16

1G hugepages

Base (DPDK v17.08)

+ IOTLB series, IOMMU=off

+ IOTLB series, IOMMU=on

M
p

p
s

Guest -> host Host -> guest IO loopback
0

2

4

6

8

10

12

14

16

2M hugepages

Base (DPDK v17.08)

+ IOTLB series, IOMMU=off

+ IOTLB series, IOMMU=on

M
p

p
s

Future improvements

Improve VNF safety with Vhost-User/DPDK IOMMU support22

Contiguous IOTLB entries merging
Future improvements

● Performance penalty with 2MB hugepages due to higher number of IOTLB entries
→ IOTLB cache lookup overhead

● Most of IOTLB entries are both virtually AND physically contiguous
● Rough prototype merging entries fixes performance penalty

● Less IOTLB cache lookup iterations
● Better CPU cache utilization

● Remaining questions:
● Need to define invalidation strategy : invalidate all merged entry or split it?
● Is there a performance impact with dynamic mappings?

Improve VNF safety with Vhost-User/DPDK IOMMU support23

Interval tree based IOTLB cache
Future improvements

● Vhost-kernel backend uses interval tree for its IOTLB cache implementation
→ O(log(n)) for lookup

● Current Vhost-user backend only implements sorted list
→ O(n) for lookup

● Required work
→ New interval tree lib in DPDK
→ Convert Vhost-user’s IOTLB cache implementation

Improve VNF safety with Vhost-User/DPDK IOMMU support24

IOTLB misses batching
Future improvements

● IOMMU support with Virtio-net kernel driver not viable due to poor performance
→ Bursting broken due to IOTLB miss for every packets

● Before starting packets burst loop, translate all descriptors buffers addresses
● If no missing translations, start the burst
● If some, send IOTLB miss requests for all missing translations

● Might improve overall performance with multiple vhost-user ports per lcore

Conclusion

Improve VNF safety with Vhost-User/DPDK IOMMU support26

Conclusion

● Vhost-user design close to Vhost-kernel
● Reasonable performance impact with static mappings

● And more improvements coming soon!
● Performance impact a blocker with dynamic mappings
● Special thanks to :

● Jason Wang & Wei Xu – Vhost-kernel IOMMU support
● Peter Xu – vIOMMU support in QEMU

Questions?

THANK YOU!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

