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Why do we need IOMMU support?
Background

Current status (i.e. without IOMMU support):
● Use of UIO or VFIO with enable_unsafe_noiommu_mode = 1

→ Taints the Kernel, require rebuild with some distros
→ Use of GPA (guest physical addresses) for virtqueues and buffers

● Vhost-user backends mmaps all the guest memory with RW permissions
● DPDK app in guest could make Vhost to access memory the app hasn’t access to

→ The guest app could pass random GPA as descriptor buffer address
→ Vhost backend overwrites random memory with packet content, or leaks 
random memory as a packet. 
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IOMMU support in guest
Background

PCIe device driver 
Virtio PMD (v16.11)

VFIO

IOMMU driver

User

Kernel

IOMMU Framework

PCIe device driver 

Virtio-net (v4.6)

DMA Framework

iommu_map()

ioctl(..., VFIO_IOMMU_MAP_DMA, ...)

dma_map_sg()

(struct dmap_ops).map_page()(struct iommu_ops).map()

Guest
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Static vs. dynamic mappings
Background

We consider two types of DMA mappings
● Dynamic mappings (Kernel/Virtio-net driver)

→ At least one dma_map()/dma_unmap() per packet
→ At least one IOTLB miss/invalidate per packet

● Static mappings (DPDK/Virtio PMD)
→ Single iommu_map/unmap() for all the memory pool at device probe/remove
→ Only IOTLB misses the first time pages are accessed
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vIOMMU support in Qemu
Background

● Emulated IOMMU devices implementations in QEMU
→ x86 and PowerPC supported, ARM on-going
→ Platform-agnostic Virtio-IOMMU device spec being discussed

● Provides IO translation & device isolation as physical IOMMUs do
● Generic IOTLB/IOMMU API provided in QEMU

→ get IOTLB entry from (IOVA, perm)
→ IOMMU notifiers (MAP/UNMAP)
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vIOMMU support for Vhost backend dev in QEMU
Background

● Initially introduced with kernel backend
● Implements Address Translation Services (ATS) from PCIe spec

→ Using QEMU’s IOTLB/IOMMU APIs
●  Vhost-backend changes

● Notify the backend for IOTLB invalidates
● Notify the backend for IOTLB updates
● Handle backend IOTLB miss requests
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vIOMMU support for Vhost backend in kernel
Background

● Implements new protocol using Vhost-kernel chardev reads/writes
● Other vhost-kernel requests uses ioctls
● Required to be able to poll for IOTLB miss requests 

● struct vhost_iotlb_msg message types
● VHOST_IOTLB_MISS : Request QEMU for an IOTLB entry
● VHOST_IOTLB_UPDATE : Update Kernel with a new IOTLB entry
● VHOST_IOTLB_INVALIDATE : Notify Kernel an IOTLB entry is now invalid 

● Device IOTLB implemented in vhost kernel driver
● Relies on interval tree for better cache lookup performance → O(log(n))
● Dedicated cache for virtqueues metadata → O(1)



Vhost-user device IOTLB implentation
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Vhost-user protocol update
Vhost-user device IOTLB implementation

● Goal : design as close as possible to vhost-kernel protocol
● Problem : IOTLB miss request requires slave initiated requests support

● But vhost-user socket only supports master initiated requests
→ Introduction of a new socket for slave requests

● Slave request channel
● VHOST_USER_PROTOCOL_F_SLAVE_REQ protocol feature
● VHOST_USER_SET_SLAVE_REQ_FD request to share new socket’s fd
● Re-use master’s message structure, with new requests IDs
● Only used by IOMMU feature for now
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Vhost-user protocol update (cont’d)
Vhost-user device IOTLB implementation

● IOTLB protocol update (Since QEMU v2.10, Vhost-user spec for details)
● Master initiated : VHOST_USER_IOTLB_MSG

→ IOTLB update & invalidation requests
→ Same payload as vhost-kernel counterpart (struct vhost_iotlb_msg)
→ Reply-ack mandatory

● Slave initiated : VHOST_USER_SLAVE_IOTLB_MSG
→ IOTLB miss requests
→ Also using struct vhost_iotlb_msg as payload
→ Reply-ack optionnal
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IOTLB miss/update sequence
Vhost-user device IOTLB implementation

PMD thread
Vhost-user 

protocol thread
Main thread vCPU thread

DPDK QEMU

IOTLB miss req

IOTLB miss ack 

(optional)

IOTLB update req

IOTLB update ack

Device IOTLB 
cache insert

Slave channel

Master channel
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IOTLB invalidate sequence
Vhost-user device IOTLB implementation

PMD thread
Vhost-user 

protocol thread
Main thread vCPU thread

DPDK QEMU

IOTLB invalidate req

IOTLB invalidate ack

Device IOTLB 
cache remove

Master channel

Guest unmap 
trap



Improve VNF safety with Vhost-User/DPDK IOMMU support15

IOTLB cache implementation
Vhost-user device IOTLB implementation

● Device IOTLB cache implemented in Vhost-user backend
→ Avoid querying for every address translation

● Single writer, multiple readers to the IOTLB cache
● Writer : Vhost-user protocol threads (IOTLB updates/invalidates)
● Readers : PMD threads (IOTLB cache lookups)
● Great case for RCU! Prototyped and tested, but…

→ liburcu is LGPLv2, only small functions can be in-lined
→ Adds dependency to DPDK build
→ Some distros don’t ship liburcu
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IOTLB cache implementation
Vhost-user device IOTLB implementation

● Fallback : readers-writers locks (rte_rwlock)
● Better than regular mutexes
● But read lock uses rte_atomic32_cmpset(), optimizations to reduce its cost :

→ Per-virtqueue IOTLB cache
→ Read lock taken once per packets burst

● Initial cache implementation based on sorted lists
● Not efficient, but enough with 1G pages.
● Need a better implementation for smaller pages

● Cache sized large enough not to face misses with static mappings
→ IOTLB cache evictions should only happen with buggy/malicious guests



Benchmarks
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Physical → Virtual → Physical
Benchmarks

TE

Moongen/IXIA/...

DUT

VM

TestPMD 
(macswap)

TestPMD  
(io)

10G NIC

10G NIC

10G NIC

10G NIC

● PVP benchmark based on TestPMD
● IO forwarding on host side
● MAC swapping in guest to access packet header

● Setup information
● T-Rex + binary-search.py from lua-traffigen
● DUT

● E5-2667 v4 @3.20GHz (Broadwell)
● 32GB RAM @2400MHz
● 2 x 10G Intel X710
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Physical → Virtual → Physical
Benchmarks
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● PVP reference benchmark with IOTLB series v2
● Parameters: 64B packets, 0.005% acceptable loss, 

bidirectionnal testing (result is the sum)
● 2M/2M hugepages

● IOMMU off : No performance regression
● IOMMU on : ~25% degradation

→ IOTLB cache lookup overhead
● 1G/1G hugepages

● IOMMU on/off : No performance regression
→ Virtio PMD is the bottleneck
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Micro-benchmark using Testpmd
Benchmarks

Guest -> host Host -> guest IO loopback
0

2

4

6

8

10

12

14

16

1G hugepages

Base (DPDK v17.08)

+ IOTLB series, IOMMU=off

+ IOTLB series, IOMMU=on

M
p

p
s

Guest -> host Host -> guest IO loopback
0

2

4

6

8

10

12

14

16

2M hugepages

Base (DPDK v17.08)

+ IOTLB series, IOMMU=off

+ IOTLB series, IOMMU=on

M
p

p
s



Future improvements
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Contiguous IOTLB entries merging
Future improvements

● Performance penalty with 2MB hugepages due to higher number of IOTLB entries
→ IOTLB cache lookup overhead

● Most of IOTLB entries are both virtually AND physically contiguous
● Rough prototype merging entries fixes performance penalty

● Less IOTLB cache lookup iterations
● Better CPU cache utilization

● Remaining questions:
● Need to define invalidation strategy : invalidate all merged entry or split it?
● Is there a performance impact with dynamic mappings?
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Interval tree based IOTLB cache
Future improvements

● Vhost-kernel backend uses interval tree for its IOTLB cache implementation
→ O(log(n)) for lookup

● Current Vhost-user backend only implements sorted list  
→ O(n) for lookup

● Required work
→ New interval tree lib in DPDK
→ Convert Vhost-user’s IOTLB cache implementation
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IOTLB misses batching
Future improvements

● IOMMU support with Virtio-net kernel driver not viable due to poor performance
→ Bursting broken due to IOTLB miss for every packets

● Before starting packets burst loop, translate all descriptors buffers addresses
● If no missing translations, start the burst
● If some, send IOTLB miss requests for all missing translations

● Might improve overall performance with multiple vhost-user ports per lcore



Conclusion
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Conclusion

● Vhost-user design close to Vhost-kernel
● Reasonable performance impact with static mappings

● And more improvements coming soon!
● Performance impact a blocker with dynamic mappings
● Special thanks to :

● Jason Wang & Wei Xu – Vhost-kernel IOMMU support
● Peter Xu – vIOMMU support in QEMU



Questions?

THANK YOU!
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