follow along at




Streams and You:
A Love Story

Calvin W. Metcalf
Applied Geographics



Who

Am I°

Member of stream WG

Use streams all the time
Make a lot of maps
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What is @







that may not

be avai?;ble

it is not a callback or a promise




That can be

pipelined

supports back pressure, and makes it different from a generator




that may not
fit in memory






Writable

sfreams




var writableFileStream
var writableHttpStream
method:

}):

node streams are all binary streams
ones from npm can take objects

fs.createriteStream(
https.request ({




write
method to

add data




method

when you
are done




Can give it a
buffer, or a
string




if you give it a
you can

| }
defaults to 'utf8', same encodings as buffers



you can also
pass a

callback




event Is

emitted when it's
done writing
everything



Readable
streams



var
var
method:
}, function(
// do stuff

})i

fs.createReadStream(
https.request({

) {




'data’ event is is
emitted when a
stream has data.



event

when there is
no more




grab dl daainto abufferand calla  calback

var outData = [];

readableHttpStream

.on('data', data => outData.push(data))

.on('error', callback)

.end('end’', () = callback(null, Buffer.concat(outData)));



when you (async) consume data slower then it is produced




don't do anything
async inside
data event listener




allows
you do do

stuff as it handles




pipe to to a simple write stream

readableFileStream.pipe(new stream.Writable({
write(chunk, encoding, next) {
doSomethingAsync(chunk, next);
}
1))

listen for the finish event



streams

allow you to do it
In steps




var transform = new stream.Transform({
transform(chunk, encoding, next) {
' (chunk, (err, resp) => {

if (!Array.isArray(resp)) {
retum next(mull, resp);

}

for (let item of resp) {
this.push(item);

next();
});
}
});



deiails

if (err) {
return

}

if (lresp) {
return OF

}

if (!Array.isArray(
return (null,

}

for (let of
this.push( )3

}
OF

next is a callback so can take an error
if only emitting one thing, next can take a value
zero to Infinity things may be emitted




readableFileStream
.pipe(transform)
.pipe(new stream.Writable({
write(chunk, encoding, next) {
doSomethingAsync(chunk, next);

}
1))



real life exa Fple

|son stream o
some sort




ﬁxctja?ndﬁkr&razn(){
var first = tney;
re!:.n;nmustraan.']ia‘sﬁ:m({

dojectvoce: tne,
transfom(dirk, eooding, rext) {
if (first) {
this.psh('[');
first = false;
} else {
) this.psh(’,');
this.psh(JSN.stringify(chirk) );
rext();

lets break this down



setup:

function makeJdsonStream() {
var first = .
return new stream.Transform({
objectMode: ’

note the object mode



the fransform:

transform(chunk, encoding, next) ({
1f (first) {
this.push('[");
first = false;
} else {
this.push(',');
}
this.push(JSON.stringify(chunk));
next();
}



Wrap up:

flush( ) {
this.push( ) ;

()7




request bodies are also writable Streams

app.get('/path.json', (req, res) => {
res.type( ' json');
getData()
.pipe(JSONStream.stringify())
-pipe(res);

1)



real life

examples:



1. read filenames
from google
cloud storage






3. pull 6
dif&rent stats
out of each file




4.
it to a csv






1

eodata from
SRI server




2. convert to
sane format




3. some

extra info
ike the date




4. if it's a line
make and emit
second feature
that is a point




5 to

a cloud
service




great places
O use
streams







ETL tasks

where the data could be massive




user
uploads

where d




any task where
ou only need a
itle bit at a time
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