follow along at

Streams and You:
A Love Story

Calvin W. Metcalf
Applied Geographics

Who

Am I°

Member of stream WG

Use streams all the time
Make a lot of maps

MAP OF THE

_ SQUARE AND STATIONARY EARTH.

BY PROF. ORLANDO FERGUSON,

HOT SPRINGS, SOUTH DAKOTA.

Four Hundred Passages in the Bible that Condemn the Globe Theory, or the Flying Easth, and None Sustin Ir,
This Map is the Bible Map of the Waorld

Corvricnt mr DRLANUG FERGUSON, 1Bg3

= R

men aze dying on ihe globe
G500 mides per

the sen, and oss

arcund the conter

h (i thesr minds).
hat speed |

source: https://commons.wikimedia.org/wiki/File:Orlando-Ferguson-flat-earth-map_edit.jpg

+ e ’Qm' -_:Ef:; g .
EI + . arlve

& Traffic ©
¥ Rest Areas

0 Travel nformation
Centers ©

M Traffic Cameras ©
D 1-35 Waco

#\ Conditions Text Site

Hide Menu

Dt updated: 11/25/2015 915 AM. || Map | Satellite
Map data 02015 Google, INEG! | S0km L1 Terms of Use Report & map emor |
| :

Google
" TEXAS DEPARTMENT T . e

https://drivetexas.org, | wrote the backend...using streams

What is @

that may not

be avai?;ble

it is not a callback or a promise

That can be

pipelined

supports back pressure, and makes it different from a generator

that may not
fit in memory

Writable

sfreams

var writableFileStream
var writableHttpStream
method:

}):

node streams are all binary streams
ones from npm can take objects

fs.createriteStream(
https.request ({

write
method to

add data

method

when you
are done

Can give it a
buffer, or a
string

if you give it a
you can

| }
defaults to 'utf8', same encodings as buffers

you can also
pass a

callback

event Is

emitted when it's
done writing
everything

Readable
streams

var
var
method:
}, function(
// do stuff

})i

fs.createReadStream(
https.request({

) {

'data’ event is is
emitted when a
stream has data.

event

when there is
no more

grab dl daainto abufferand calla calback

var outData = [];

readableHttpStream

.on('data', data => outData.push(data))

.on('error', callback)

.end('end’', () = callback(null, Buffer.concat(outData)));

when you (async) consume data slower then it is produced

don't do anything
async inside
data event listener

allows
you do do

stuff as it handles

pipe to to a simple write stream

readableFileStream.pipe(new stream.Writable({
write(chunk, encoding, next) {
doSomethingAsync(chunk, next);
}
1))

listen for the finish event

streams

allow you to do it
In steps

var transform = new stream.Transform({
transform(chunk, encoding, next) {
' (chunk, (err, resp) => {

if (!Array.isArray(resp)) {
retum next(mull, resp);

}

for (let item of resp) {
this.push(item);

next();
});
}
});

deiails

if (err) {
return

}

if (lresp) {
return OF

}

if (!Array.isArray(
return (null,

}

for (let of
this.push()3

}
OF

next is a callback so can take an error
if only emitting one thing, next can take a value
zero to Infinity things may be emitted

readableFileStream
.pipe(transform)
.pipe(new stream.Writable({
write(chunk, encoding, next) {
doSomethingAsync(chunk, next);

}
1))

real life exa Fple

|son stream o
some sort

ﬁxctja?ndﬁkr&razn(){
var first = tney;
re!:.n;nmustraan.']ia‘sﬁ:m({

dojectvoce: tne,
transfom(dirk, eooding, rext) {
if (first) {
this.psh('[');
first = false;
} else {
) this.psh(’,');
this.psh(JSN.stringify(chirk));
rext();

lets break this down

setup:

function makeJdsonStream() {
var first = .
return new stream.Transform({
objectMode: ’

note the object mode

the fransform:

transform(chunk, encoding, next) ({
1f (first) {
this.push('[");
first = false;
} else {
this.push(',');
}
this.push(JSON.stringify(chunk));
next();
}

Wrap up:

flush() {
this.push() ;

()7

request bodies are also writable Streams

app.get('/path.json', (req, res) => {
res.type(' json');
getData()
.pipe(JSONStream.stringify())
-pipe(res);

1)

real life

examples:

1. read filenames
from google
cloud storage

3. pull 6
dif&rent stats
out of each file

4.
it to a csv

1

eodata from
SRI server

2. convert to
sane format

3. some

extra info
ike the date

4. if it's a line
make and emit
second feature
that is a point

5 to

a cloud
service

great places
O use
streams

ETL tasks

where the data could be massive

user
uploads

where d

any task where
ou only need a
itle bit at a time

e @cwmma

e qithukt omy/« alvinmetcalf

® nm' org cwimimc
e this presentation: stfreams.how
® more resour

