
http://ontopic.io 1 

Storm Crawler 
A real-time distributed web crawling and 

monitoring framework 

Jake Dodd, co-founder 

http://ontopic.io 

jake@ontopic.io 

 

ApacheCon North America 2015 



http://ontopic.io 

§  Overview 
§  Continuous vs. Batch 
§  Storm-Crawler Components 
§  Integration 
§  Use Cases 
§  Demonstration 
§  Q&A 

2 

Agenda 



http://ontopic.io 3 

Storm-Crawler overview 

§  Software Development Kit (SDK) for building web 
crawlers on Apache Storm 

§  https://github.com/DigitalPebble/storm-crawler 
§  Apache License v2 
§  Project Director: Julien Nioche (DigitalPebble Ltd) 

§  + 3 committers 



http://ontopic.io 4 

Facts overview 

§  Powered by the Apache Storm framework 
§  Real-time, distributed, continuous crawling 
§  Discovery to indexing with low latency 
§  Java API 
§  Available as a Maven dependency 



http://ontopic.io 5 

The Old Way continuous vs. 
batch 

§  Batch-oriented crawling 
§  Generate a batch of URLs 
§  batch fetch à batch parse à batch index à rinse & repeat 

§  Benefits 
§  Well-suited when data locality is paramount 

§  Challenges 
§  Inefficient use of resources—parsing when you could be 

fetching, hard to allocate and scale resources for individual 
tasks 

§  High latency—at least several minutes, often hours, 
sometimes days between discovery and indexing 



http://ontopic.io 6 

Continuous Crawl continuous vs. 
batch 

§  Treat crawling as a streaming problem 
§  Feed the machine with a stream of URLs, receive a stream of 

results ASAP 
§  URL à fetch à parse à (other stuff) à index 

§  Benefits 
§  Low latency—discovery to indexing in mere moments 
§  Efficient use of resources—always be fetching 
§  Able to allocate resources to tasks on-the-fly (e.g. scale 

fetchers while holding parsers constant) 
§  Easily support stateful features (sessions and more) 

§  Challenges 
§  URL queuing and scheduling 



http://ontopic.io 7 

The Static Web continuous vs. 
batch 

§  The Old Model: the web as a collection of linked static 
documents 
§  Still a useful model…just ask Google, Yahoo, Bing, and friends 

 
§  But the web has evolved—dynamism is the rule, not 

the exception 



http://ontopic.io 8 

The Web Stream continuous vs. 
batch 

§  Dynamic resources produce a stream of links to new 
documents 
§  Applies to web pages, feeds, and social media 

 

static 

static 

dynamic 
new 

new 

new 



http://ontopic.io 9 

Can we do both? continuous vs. 
batch 

§  From a crawler’s perspective, there’s not much 
difference between new and existing (but newly-
discovered) pages 

§  Creating a web index from scratch can be modeled as 
a streaming problem 
§  Seed URLs à stream of discovered outlinks à rinse & repeat 

§  Discovering and indexing new content is a streaming 
problem 

§  Batch vs. continuous: both methods work, but 
continuous offers faster data availability 
§  Often important for new content 

 



http://ontopic.io 10 

Conclusions continuous vs. 
batch 

§  A modern web crawler should: 
§  Use resources efficiently 
§  Leverage the elasticity of modern cloud infrastructures 
§  Be responsive—fetch and index new documents with low 

latency 
§  Elegantly handle streams of new content 

§  The dynamic web requires a dynamic crawler 

 



http://ontopic.io 11 

Storm-Crawler: What is it? storm-crawler 
components 

§  A Software Development Kit (SDK) for building and 
configuring continuous web crawlers 

§  Storm components (spouts & bolts) that handle 
primary web crawling operations 
§  Fetching, parsing, and indexing 

§  Some of the code has been borrowed (with much 
gratitude) from Apache Nutch 
§  High level of maturity 

§  Organized into two sub-projects 
§  Core (sc-core): components and utilities needed by all crawler 

apps 
§  External (sc-external): components that depend on external 

technologies (Elasticsearch and more) 

 



http://ontopic.io 12 

What is it not? storm-crawler 
components 

§  Storm-Crawler is not a full-featured, ready-to-use web 
crawler application 
§  We’re in the process of building that separately—will use the 

Storm-Crawler SDK 

§  No explicit link & content management (such as linkdb 
and crawldb with Nutch) 
§  But quickly adding components to support recursive crawls 

§  No PageRank 

 



http://ontopic.io 13 

Basic Topology  storm-crawler 
components 

 

 

spouts bolts 

Spout URL 
Partitioner 

Fetcher 1 

Fetcher 2 

Fetcher 
(n) 

Parser 1 

Parser (n) 

Indexer 

Storm topologies consist 
of spouts and bolts 



http://ontopic.io 14 

Spouts storm-crawler 
components 

§  File spout 
§  In sc-core 
§  Reads URLs from a file 

§  Elasticsearch spout 
§  In sc-external 
§  Reads URLs from an Elasticsearch index 
§  Functioning, but we’re working on improvements 

§  Other options (Redis, Kafka, etc.) 
§  Will discuss later in presentation 

 



http://ontopic.io 15 

Bolts storm-crawler 
components 

§  The SDK includes several bolts that handle: 
§  URL partitioning 
§  Fetching 
§  Parsing 
§  Filtering 
§  Indexing 

§  We’ll briefly discuss each of these 

 



http://ontopic.io 16 

Bolts: URL Partitioner storm-crawler 
components 

§  Partitions incoming URLs by host, domain, or IP 
address 
§  Strategy is configurable in the topology configuration file 

§  Creates a partition field in the tuple 
§  Storm’s grouping feature can then be used to distribute 

tuples according to requirements 
§  localOrShuffle() to randomly distribute URLs to fetchers 
§  or fieldsGrouping() to ensure all URLs with the same {host, 

domain, IP} go to the same fetcher 

 



http://ontopic.io 17 

Bolts: Fetchers storm-crawler 
components 

§  Two fetcher bolts provided in sc-core 
§  Both respect robots.txt 
§  FetcherBolt 

§  Multithreaded (configurable number of threads) 
§  Use with fieldsGrouping() on the partition key and a 

configurable crawl delay to ensure your crawler is polite 

§  SimpleFetcherBolt 
§  No internal queues 
§  Concurrency configured using parallelism hint and # of tasks 
§  Politeness must be handled outside of the topology 
§  Easier to reason about; requires additional work to enforce 

politeness 

 



http://ontopic.io 18 

Bolts: Parsers storm-crawler 
components 

§  Parser Bolt 
§  Utilizes Apache Tika for parsing 
§  Collects, filters, normalizes, and emits outlinks 
§  Collects page metadata (HTTP headers, etc) 
§  Parses the page’s content to a text representation 

§  Sitemap Parser Bolt 
§  Uses the Crawler-Commons sitemap parser 
§  Collects, filters, normalizes, and emits outlinks 
§  Requires a priori knowledge that a page is a sitemap 

 



http://ontopic.io 19 

Bolts: Indexing storm-crawler 
components 

§  Printer Bolt (in sc-core) 
§  Prints output to stdout—useful for debugging 

§  Elasticsearch Indexer Bolt (in sc-external) 
§  Indexes parsed page content and metadata into Elasticsearch 

§  Elasticsearch Status Bolt (in sc-external) 
§  URLs and their status (discovered, fetched, error) are emitted 

to a special status stream in the storm topology 
§  This bolt indexes the URL, metadata, and its status into a 

‘status’ Elasticsearch index 

 



http://ontopic.io 20 

Other components storm-crawler 
components 

§  URL Filters & Normalizers 
§  Configurable with a JSON file 
§  Regex filter & normalizer borrowed from Nutch 
§  HostURLFilter enables you to ignore outlinks from outside 

domains or hosts 

§  Parse Filters 
§  Useful for scraping and extracting info from pages 
§  XPath-based parse filter, more to come 

§  Filters & Normalizers are easily pluggable 

 



http://ontopic.io 21 

Integrating Storm-Crawler integration 

§  Because Storm-Crawler is an SDK, it needs to be 
integrated with other technologies to build a full-
featured web crawler 

§  At the very least, a database 
§  For URLs, metadata, and maybe content 
§  Some search engines can double as your core data store 

(beware…research ‘Jepsen tests’ for caveats) 

§  Probably a search engine 
§  Solr, Elasticsearch, etc. 
§  sc-external provides basic integration with Elasticsearch 

§  Maybe some distributed system technologies for 
crawl control 
§  Redis, Kafka, ZooKeeper, etc. 

 



http://ontopic.io 22 

Storm-Crawler at Ontopic integration 

§  The storm-crawler SDK is our workhorse for web 
monitoring 

§  Integrated with Apache Kafka, Redis, and several 
other technologies 

§  Running on an EC2 cluster managed by Hortonworks 
HDP 2.2 



http://ontopic.io 23 

Architecture integration 

•  Seed List 
•  Domain locks 
•  Outlink List 
•  Logstash 

events 

Redis 

URL 
Manager 

(Ruby 
app) 

manages 
•  One topology 
•  Seed stream and 

outlink stream 

storm-crawler 

•  One topic, two 
partitions 

kafka  

Publishes seeds and 
outlinks to Kafka 

Kafka Spout with two executors 
(one for each topic partition) 

Elasticsearch 

indexing logstash 



http://ontopic.io 24 

R&D Cluster (AWS) integration 

Redis 

manages 

storm-crawler 

kafka  

Publishes seeds and 
outlinks to Kafka 

Kafka Spout with two executors 
(one for each topic partition) 

Elasticsearch 

indexing logstash 

1 x r3.large 1 x m1.small instance 
(Redis and Ruby app) 

Nimbus: 1 x r3.large 
Supervisors: 3 x c3.large 
(in a placement group) 

1 x c3.large 



http://ontopic.io 25 

Integration Examples integration 

§  Formal crawl metadata specification & serialization 
with Avro 

§  Kafka publishing bolt 
§  Component to publish crawl data to Kafka (complex URL 

status handling, for example, could be performed by another 
topology) 

§  Externally-stored transient crawl data 
§  Components for storing shared crawl data (such as a 

robots.txt cache) in a key-value store (Redis, Memcached, etc.) 



http://ontopic.io 26 

Use Cases & Users use cases 

§  Processing streams of URLs 
§  http://www.weborama.com 

§  Continuous URL monitoring 
§  http://www.shopstyle.com 
§  http://www.ontopic.io 

§  One-off non-recursive crawling 
§  http://www.stolencamerafinder.com 

§  Recursive crawling 
§  http://www.shopstyle.com 

§  More in development & stealth mode 



http://ontopic.io 27 

Demonstration demonstration 

 
 
 
 

(live demo of Ontopic’s topology) 



http://ontopic.io 28 

Q&A q&a 

 
 
 
 

Any questions? 



http://ontopic.io 29 

Resources q&a 

§  Project page 
§  https://github.com/DigitalPebble/storm-crawler 

§  Project documentation 
§  https://github.com/DigitalPebble/storm-crawler/wiki 

§  Previous presentations 
§  http://www.slideshare.net/digitalpebble/j-nioche-

bristoljavameetup20150310 
§  http://www.slideshare.net/digitalpebble/storm-crawler-

ontopic20141113?related=1 

§  Other resources 
§  http://infolab.stanford.edu/~olston/publications/

crawling_survey.pdf 

Thank you! 


