
Thwarting unknown bugs:
hardening features in the mainline
Linux kernel

Mark Rutland <mark.rutland@arm.com>
ARM Ltd

Embedded Linux Conference Europe 2016

October 11, 2016

© ARM 2016



What’s the problem?

2 © ARM 2016



Linux has bugs today

git log --oneline \
--grep='Fixes:' \
v4.7..v4.8-rc1 | \
wc -l

503

3 © ARM 2016



The presence of bugs is practically unavoidable

Code written by experienced engineers has bugs

Code reviewed by subject-matter experts has bugs

Static analysis only finds some bugs

Testing and fuzzing only finds some bugs

Formal methods do not scale to size and scope of project
(30+ architectures with varied ISAs, memory models, system-level details)

All are valuable, but insufficient to rule out bugs.

4 © ARM 2016



Some bugs have security implications

(“linux kernel” CVEs on mitre.org, 2016-09-27 - https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=linux+kernel)

5 © ARM 2016

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=linux+kernel


Adversaries find bugs before we do

(Trimmed and redacted announcement - http://seclists.org/fulldisclosure/2010/Sep/268)

6 © ARM 2016

http://seclists.org/fulldisclosure/2010/Sep/268


Bugs go unnoticed upstream for a long time – 5+ years

(Kees Cook, LSS2016, ‘Status of the Kernel Self Protection Project’ - https://outflux.net/slides/2016/lss/kspp.pdf)

7 © ARM 2016

https://outflux.net/slides/2016/lss/kspp.pdf


The big picture

Linux has bugs today, and new bugs will be introduced

... these will be attacked in the wild

... and we will fix them too late

Vulnerabilities can outlast devices!

8 © ARM 2016



Hardening

9 © ARM 2016



Making bugs more difficult to exploit

We don’t know about specific bugs, but we see recurring classes, e.g.
Stack buffer overflow
Dereference of __user pointers

We can attack classes with common protections
cover all instances
... including those we don’t know about yet

Complementary to usual bug fixing
Not 100% effective
Reduces exploitability, does not fix underlying issues

10 © ARM 2016



Hardening in mainline

Kernel hardening / self-protection / etc is a hot topic now
Lots of work happening (upstream & elsewhere)
... but there’s lots to do
... and most devices aren’t running v6.5.x yet

Mainline has some hardening features already
There may be better options not (yet) in mainline
... but these are available today
... they’re maintained and improving
... and turning them on is easy
... yet they’re not used as often as they could be

11 © ARM 2016



Strict kernel memory permissions

12 © ARM 2016



Lax kernel memory permissions

Typically Linux maps all kernel memory with RWX permissions
... so kernel code can be modified
... and const data can be modified
... and data can be executed

These permissions are useful when building attacks
... are (almost always) useless to us
... and use typically indicates a bug

13 © ARM 2016



Minimise kernel memory permissions

Have the MMU enforce minimal memory permissions:
Map code (e.g. .text) as read-only, executable
Map const data (e.g. .rodata) as read-only, non-executable
Map data (e.g. .data) as read-only, non-executable

Some arch-specific code required
Page tables may be rewritten after boot
Temporary RW mappings for deliberate code-patching

14 © ARM 2016



CONFIG_DEBUG_RODATA

Badly named: not just a debug feature

Small amount of additional padding inserted between .text/.data/.rodata

No changes required to core code, libraries, drivers, etc

No runtime overhead (ignoring a small amount of TLB pressure)

Available on arm, arm64, parisc, s390, x86-32, x86-64

Will be mandatory on arm64 & x86 in v4.9

15 © ARM 2016



CONFIG_DEBUG_SET_MODULE_RONX

Just like CONFIG_DEBUG_RODATA, but for modules
... likewise, not just a debug feature
No changes required to core code, libraries, drivers, etc
No runtime overhead (ignoring a small amount of TLB pressure)

Available on arm, arm64, s390, x86-32, x86-64

16 © ARM 2016



Stack smashing protection

17 © ARM 2016



Stack smashing

Stacks typically contain return address and other data

Stacks grow downwards, buffers grow upwards1

Often, buffer size checks are missed (e.g. bad strcpy() use)

Attacker-controlled buffer overflow can change return address

ret addr
frame ptr
buf[3]
buf[2]
buf[1]
buf[0]

1On many, but not all architectures

18 © ARM 2016



Stack smashing protection

Have compiler insert code to detect stack buffer overflow
At function entry, place canary between return address and data
At function return, verify the canary is unchanged

Small piece of arch-specific bootstrap code required

No changes required to core code, libraries, drivers, etc

Beware:

A known canary value can be spoofed

Other data (e.g. local variables) can still be corrupted

ret addr
frame ptr
canary
buf[3]
buf[2]
buf[1]
buf[0]

19 © ARM 2016



CONFIG_STACKPROTECTOR_REGULAR

Protects all functions with a local character array (8 bytes +)

Affects ~3% of functions, increases kernel size by ~0.3%

Requires GCC 4.2+

Available on arm, arm64, mips, sh, x86-32, x86-64

20 © ARM 2016



CONFIG_STACKPROTECTOR_STRONG

Protects all functions which:
have a local array (of any type or length), or
pass a stack address to a function, or
assign a stack address to a variable, or
use register local variables

Affects ~20% of functions, increases kernel size by ~2%

Requires GCC 4.9+ (introduced in v3.13)

Available on arm, arm64, mips, sh, x86-32, x86-64

21 © ARM 2016



User/Kernel memory segregation

22 © ARM 2016



A shared address space

Typically, user and kernel memory share the same address space
the same load/store instructions can access both
... thus accidental __user data dereferences aren’t caught
... nor are accidental branches to __user code
... leaving a very powerful primitive for exploits

Logically, the two memory spaces are distinct
userspace can’t access kernel memory
kernel only needs to access kernel memory to function
kernel access to user memory rare and explicit (e.g. get_user())

23 © ARM 2016



Un-sharing the address space

Some MMUs can’t automatically limit kernel access to mapped memory
... but all have the ability to switch page tables
... or other manual access control features (e.g. domains on ARM)

We can explicitly disallow access to user memory when we don’t need it
upon entry to kernel, unmap (or disable access to) user memory
upon exit from kernel, map (or enable access to) user memory
within get_user() and friends, enable access to user memory

Adds some overhead to kernel entry/exit, get_user() and friends

24 © ARM 2016



Stricter permissions

Some MMUs can automatically prevent kernel execution of user memory
e.g. PXN on arm/arm64, SMEP on x86
... we use these automatically when available
prevents arbitrary code execution
... but code-reuse attacks are still possible

Recent MMUs can automatically prevent kernel access to user memory
e.g. PAN on arm64, SMAP on x86
some arch-specific work in get_user() and friends required
prevents implicit __user memory accesses
... validation sill necessary after get_user() and friends

25 © ARM 2016



Segregation options

CONFIG_CPU_SW_DOMAIN_PAN (arm)
Low 1MB unprotected if vectors aren’t remappable (ancient parts)
Requires domains, only available when using short descriptors

CONFIG_ARM64_PAN (arm64)
Can be enabled on generic kernel – patched in as necessary
Only effective when PAN is present in HW (ARMv8.1)

CONFIG_X86_SMAP (x86)
Can be enabled on generic kernel – patched in as necessary
Only effective when SMAP is present in HW

In all cases, no changes required to core code, libraries, drivers, etc

26 © ARM 2016



More effective testing

27 © ARM 2016



CONFIG_KASAN_OUTLINE, CONFIG_KASAN_INLINE

Not a hardening feature, but very useful when testing

Byte-granular use-after-free and out-of-bounds detection
Requires GCC 4.9.2+

requires GCC 5.0+ to handle stack-local variables and globals

Outline keeps kernel small, inline is faster

Available on arm64, x86-64

28 © ARM 2016



CONFIG_UBSAN

Detects undefined behaviour at runtime

May have false positives in some edge cases

Requires GCC 4.9+

Avaialble on arm, arm64, powerpc, x86-32, x86-64

29 © ARM 2016



Questions?

30 © ARM 2016



The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM limited

(or its subsidiaries) in the EU and/or elsewhere. All rights reserved. All other marks featured may be

trademarks of their respective owners.

Copyright © 2016 ARM Limited

© ARM 2016


	
	
	Linux has bugs today
	The presence of bugs is practically unavoidable
	Some bugs have security implications
	Adversaries find bugs before we do
	Bugs go unnoticed upstream for a long time – 5+ years
	The big picture
	
	Making bugs more difficult to exploit
	Hardening in mainline
	
	Lax kernel memory permissions
	Minimise kernel memory permissions
	CONFIG_DEBUG_RODATA
	CONFIG_DEBUG_SET_MODULE_RONX
	
	Stack smashing
	Stack smashing protection
	CONFIG_STACKPROTECTOR_REGULAR
	CONFIG_STACKPROTECTOR_STRONG
	
	A shared address space
	Un-sharing the address space
	Stricter permissions
	Segregation options
	
	CONFIG_KASAN_OUTLINE, CONFIG_KASAN_INLINE
	CONFIG_UBSAN
	
	

