ARM

Thwarting unknown bugs:
hardening features in the mainline
Linux kernel

Mark Rutland <mark.rutland@arm.com>
ARM Ltd

Embedded Linux Conference Europe 2016
October 11,2016

© ARM 2016

What’s the problem!?

ARM

Linux has bugs today

git log —--oneline \
-—-grep='Fixes:' \
vd.7..v4.8-rcl | \
wc -1

503

ARM

The presence of bugs is practically unavoidable

= Code written by experienced engineers has bugs

= Code reviewed by subject-matter experts has bugs
= Static analysis only finds some bugs

= Testing and fuzzing only finds some bugs

= Formal methods do not scale to size and scope of project
(30+ architectures with varied ISAs, memory models, system-level details)

All are valuable, but insufficient to rule out bugs.

4 © ARM 2016 ARM

Some bugs have security implications

5

|There are 1496 CVE entries that match your search.

Name
CVE-2016-6516

CVE-2016-6480
CVE-2016-6198
CVE-2016-6197
CVE-2016-6187
CVE-2016-6162
CVE-2016-6156
CVE-2016-6136
CVE-2016-6130
CVE-2016-5829

CVE-2016-5828

CVE-2016-5728

© ARM 2016

Description
Race condition in the ioctl_file_dedupe_range function in fs/ioctl.c in the Linux kernel through 4.7 allows local users to cause a denial of service (heap-based buffer
overflow) or possibly gain privileges by changing a certain count value, aka a "double fetch" vulnerability.
Race condition in the ioctl_send_fib function in drivers/scsi/aacraid/commctrl.c in the Linux kernel through 4.7 allows local users to cause a denial of service (out-of-bounds
access or system crash) by changing a certain size value, aka a "double fetch" vulnerability.
The filesystem layer in the Linux kernel before 4.5.5 proceeds with post-rename operations after an OverlayFS file is renamed to a self-hardlink, which allows local users to
cause a denial of service (system crash) via a rename system call, related to fs/namei.c and fs/open.c.
fs/overlayfs/dir.c in the OverlayFS filesystem implementation in the Linux kernel before 4.6 does not properly verify the upper dentry before proceeding with unlink and
rename system-call processing, which allows local users to cause a denial of service (system crash) via a rename system call that specifies a self-hardlink.

The apparmor_setprocattr function in security/apparmor/Ism.c in the Linux kernel before 4.6.5 does not validate the buffer size, which allows local users to gain privileges
by triggering an AppArmor setprocattr hook.

net/core/skbuff.c in the Linux kernel 4.7-rc6 allows local users to cause a denial of service (panic) or possibly have unspecified other impact via certain IPv6 socket
operations.

Race condition in the ec_device_ioctl_xcmd function in drivers/platform/chrome/cros_ec_dev.c in the Linux kernel before 4.7 allows local users to cause a denial of service
(out-of-bounds array access) by changing a certain size value, aka a "double fetch" vulnerability.

Race condition in the audit_log_single_execve_arg function in kernel/auditsc.c in the Linux kernel through 4.7 allows local users to bypass intended character-set
restrictions or disrupt system-call auditing by changing a certain string, aka a "double fetch" vulnerability.

Race condition in the sclp_ctl_ioctl_sccb function in drivers/s390/char/sclp_ctl.c in the Linux kernel before 4.6 allows local users to obtain sensitive information from kernel
memory by changing a certain length value, aka a "double fetch" vulnerability.

Multiple heap-based buffer overflows in the hiddev_ioctl_usage function in drivers/hid/usbhid/hiddev.c in the Linux kernel through 4.6.3 allow local users to cause a denial
of service or possibly have unspecified other impact via a crafted (1) HIDIOCGUSAGES or (2) HIDIOCSUSAGES ioctl call.

The start_thread function in arch/powerpc/kernel/process.c in the Linux kernel through 4.6.3 on powerpc platforms mishandles transactional state, which allows local users
to cause a denial of service (invalid process state or TM Bad Thing exception, and system crash) or possibly have unspecified other impact by starting and suspending a
transaction before an exec system call.

Race condition in the vop_ioctl function in drivers/misc/mic/vop/vop_vringh.c in the MIC VOP driver in the Linux kernel before 4.6.1 allows local users to obtain sensitive
information from kernel memory or cause a denial of service (memory corruption and system crash) by changing a certain header, aka a "double fetch" vulnerability.

(“linux kernel” CVEs on mitre.org, 2016-09-27 - https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=linux+kernel)

ARM

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=linux+kernel

Adversaries find bugs before we do

_vs x86_64 Linux Kernel

Fron
Date: Wed, 15 Sep 2010 22:

:23 -0700 (PDT)
/*

_Vs Linux Kernel x86_64 eday
Today is a sad day..

R.I.P.
Tue, 29 Apr 2008 / Tue, 7 Sep 2018

a bit of history:
MCAST _MSFILTER Compat mode bug found... upon commit! (2 year life on this one)

Thanks you for signing-off on this one guys.

This exploit has been tested very thoroughly
over the course of the past few years on many many targets.

Thanks to redhat for being nice enough to backport it into early
kernel versions (anything from later August 2008+)

Exploit attached. Another @day bites the dust and goes into our public exploit pack :)
_ brings you ABftw.c - Linux Kernel x86 64 local not@dayanymore exploit.

Attachment: ABftw.c
Description:

(Trimmed and redacted announcement - http://seclists.org/fulldisclosure/2010/Sep/268)

ARM

http://seclists.org/fulldisclosure/2010/Sep/268

Bugs go unnoticed upstream for a long time — 5+ years

L e e
v e v b e

(Kees Cook, LSS2016, ‘Status of the Kernel Self Protection Project’ - https://outflux.net/slides/2016/1ss/kspp.pdf)

7 © ARM 2016 ARM

https://outflux.net/slides/2016/lss/kspp.pdf

The big picture

= Linux has bugs today, and new bugs will be introduced
= ... these will be attacked in the wild

= ... and we will fix them too late

Vulnerabilities can outlast devices!

8 © ARM 2016 ARM

Hardening

9 © ARM 2016 ARM

Making bugs more difficult to exploit

* We don’t know about specific bugs, but we see recurring classes, e.g.
= Stack buffer overflow

= Dereference of user pointers

* We can attack classes with common protections
= cover all instances
= ... including those we don’t know about yet

= Complementary to usual bug fixing
= Not 100% effective

= Reduces exploitability, does not fix underlying issues

10 © ARM 2016 ARM

Hardening in mainline

Kernel hardening / self-protection / etc is a hot topic now
= Lots of work happening (upstream & elsewhere)
= ... but there’s lots to do

= ... and most devices aren’t running v6.5.x yet

= Mainline has some hardening features already
= There may be better options not (yet) in mainline
= ... but these are available today
= ... they’re maintained and improving
= ... and turning them on is easy

= ... yet they’re not used as often as they could be

I © ARM 2016 ARM

Strict kernel memory permissions

12 © ARM 2016 ARM

Lax kernel memory permissions

= Typically Linux maps all kernel memory with RWX permissions
= ... so kernel code can be modified
= .. and const data can be modified
= ... and data can be executed

= These permissions are useful when building attacks

= ... are (almost always) useless to us
= ... and use typically indicates a bug

13 © ARM 2016 ARM

Minimise kernel memory permissions

= Have the MMU enforce minimal memory permissions:
= Map code (e.g. .text) as read-only, executable
= Map const data (e.g. . rodata) as read-only, non-executable
= Map data (e.g. .data) as read-only, non-executable

= Some arch-specific code required
= Page tables may be rewritten after boot
= Temporary RW mappings for deliberate code-patching

14 © ARM 2016

ARM

CONFIG DEBUG RODATA

= Badly named: not just a debug feature

= Small amount of additional padding inserted between .text/.datal/.rodata
* No changes required to core code, libraries, drivers, etc

= No runtime overhead (goringa small amount of TLB pressure)

= Available on arm, armé4, parisc, s390, x86-32, x86-64

= Will be mandatory on armé4 & x86 in v4.9

15 © ARM 2016 ARM

CONFIG DEBUG SET MODULE RONX

* Just like CONFIG_DEBUG_RODATA, but for modules

= ... likewise, not just a debug feature
= No changes required to core code, libraries, drivers, etc

= No runtime overhead (gnoringa small amount of TLB pressure)

= Available on arm, armé4, s390, x86-32, x86-64

16 © ARM 2016 ARM

Stack smashing protection

17 © ARM 2016 ARM

Stack smashing

= Stacks typically contain return address and other data

= Stacks grow downwards, buffers grow upwards'

= Often, buffer size checks are missed (e.g. bad strcpy () use) buf

= Attacker-controlled buffer overflow can change return address buf

'On many, but not all architectures

18 © ARM 2016 ARM

Stack smashing protection

= Have compiler insert code to detect stack buffer overflow

= At function entry, place canary between return address and data
= At function return, verify the canary is unchanged

= Small piece of arch-specific bootstrap code required

= No changes required to core code, libraries, drivers, etc

Beware:
= A known canary value can be spoofed

= Other data (e.g. local variables) can still be corrupted

19 © ARM 2016

ARM

CONFIG STACKPROTECTOR REGULAR

= Protects all functions with a local character array (8 bytes +)
= Affects ~3% of functions, increases kernel size by ~0.3%

= Requires GCC 4.2+

= Available on arm, armé4, mips, sh, x86-32, x86-64

20 © ARM 2016 ARM

CONFIG STACKPROTECTOR STRONG

= Protects all functions which:

= have a local array (of any type or length), or
= pass a stack address to a function, or

= assign a stack address to a variable, or

= use register local variables

Affects ~20% of functions, increases kernel size by ~2%

Requires GCC 4.9+ (introduced in v3.13)

Available on arm, armé4, mips, sh, x86-32, x86-64

21 © ARM 2016 ARM

User/Kernel memory segregation

22 © ARM 2016 ARM

A shared address space

= Typically, user and kernel memory share the same address space
= the same load/store instructions can access both
= .. thus accidental user data dereferences aren’t caught
= .. nor are accidental branches to user code
= ... leaving a very powerful primitive for exploits

= Logically, the two memory spaces are distinct
= userspace can’t access kernel memory
= kernel only needs to access kernel memory to function
= kernel access to user memory rare and explicit (e.g. get user())

23 © ARM 2016 ARM

Un-sharing the address space

= Some MMUs can’t automatically limit kernel access to mapped memory

= ... but all have the ability to switch page tables
= ... or other manual access control features (e.g. domains on ARM)

* We can explicitly disallow access to user memory when we don’t need it

= upon entry to kernel, unmap (or disable access to) user memory
= upon exit from kernel, map (or enable access to) user memory
= within get user () and friends, enable access to user memory

* Adds some overhead to kernel entry/exit, get user () and friends

24 © ARM 2016 ARM

Stricter permissions

= Some MMUs can automatically prevent kernel execution of user memory
= e.g. PXN on arm/armé4, SMEP on x86
= ... we use these automatically when available
= prevents arbitrary code execution

= ... but code-reuse attacks are still possible

= Recent MMUs can automatically prevent kernel access to user memory
= e.g. PAN on armé4, SMAP on x86
= some arch-specific work in get _user () and friends required
= prevents implicit user memory accesses

= ... validation sill necessary after get user () and friends

25 © ARM 2016

ARM

Segregation options

= CONFIG CPU SW_DOMAIN PAN (arm)

* Low IMB unprotected if vectors aren’t remappable (ancient parts)
= Requires domains, only available when using short descriptors

= CONFIG_ARM64 PAN (armé4)

= Can be enabled on generic kernel — patched in as necessary
= Only effective when PAN is present in HW (ARMv8.1)

" CONFIG_X86 SMAP (x86)

= Can be enabled on generic kernel — patched in as necessary
= Only effective when SMAP is present in HW

In all cases, no changes required to core code, libraries, drivers, etc

26 © ARM 2016

ARM

More effective testing

27 © ARM 2016 ARM

CONFIG KASAN OUTLINE, CONFIG KASAN INLINE

= Not a hardening feature, but very useful when testing

= Byte-granular use-after-free and out-of-bounds detection
= Requires GCC 4.9.2+

= requires GCC 5.0+ to handle stack-local variables and globals

= OQutline keeps kernel small, inline is faster

= Available on armé64, x86-64

ARM

28 © ARM 2016

CONFIG UBSAN

= Detects undefined behaviour at runtime

= May have false positives in some edge cases

= Requires GCC 4.9+

= Avaialble on arm, armé4, powerpc, x86-32, x86-64

29 © ARM 2016 ARM

Questions!?

30 © ARM 2016 ARM

ARM

The trademarks featured in this presentation are registered and/or unregistered trademarl
(or its subsidiaries) in the EU and/or elsewhere. All rights reserved. All other marks
trademarks of their respective owners.
Copyright © 2016 ARM Limited

© ARM 2016

	
	
	Linux has bugs today
	The presence of bugs is practically unavoidable
	Some bugs have security implications
	Adversaries find bugs before we do
	Bugs go unnoticed upstream for a long time – 5+ years
	The big picture
	
	Making bugs more difficult to exploit
	Hardening in mainline
	
	Lax kernel memory permissions
	Minimise kernel memory permissions
	CONFIG_DEBUG_RODATA
	CONFIG_DEBUG_SET_MODULE_RONX
	
	Stack smashing
	Stack smashing protection
	CONFIG_STACKPROTECTOR_REGULAR
	CONFIG_STACKPROTECTOR_STRONG
	
	A shared address space
	Un-sharing the address space
	Stricter permissions
	Segregation options
	
	CONFIG_KASAN_OUTLINE, CONFIG_KASAN_INLINE
	CONFIG_UBSAN
	
	

