
Knocking at your back door
(O.H.D.W.M.I.A.C.A.Y.S.)

Marc Zyngier <marc.zyngier@arm.com>

ELCE16

October 13, 2016

© ARM 2016



Content

Basics of an interrupt

Interrupt controllers

Linux’s data structures

Chained interrupt controllers

Hierarchical interrupt controllers

Generic MSIs

...

Profit!

2 © ARM 2016



Please interrupt me

3 © ARM 2016



Talk you should not have missed

IRQs: the Hard, the Soft, the Threaded and the Preemptible

Alison Chaiken, Peloton Technology

Took place on Tuesday1

Covers the dynamic aspects of interrupt handling

1Use your TARDIS or wait for it to appear on some website

4 © ARM 2016



What is an interrupt?

A hardware signal

Emited from a peripheral to a CPU

Indicating that a device-specific condition has
been satisfied

Device CPU

5 © ARM 2016



Multiplexing interrupts

Having a single interrupt for the CPU is usually not
enough

Most systems have tens, hundreds of them

An interrupt controller allows them to be multiplexed

Very often architecture or platform specific
Offers specific facilities

Masking/unmasking individual interrupts
Setting priorities
SMP affinity
Exotic things like wake-up interrupts

Device

Device

In
te

rr
u
p
t 
C

o
n
tr

o
lle

r

CPU

6 © ARM 2016



Multiplexing interrupts

Having a single interrupt for the CPU is usually not
enough

Most systems have tens, hundreds of them

An interrupt controller allows them to be multiplexed

Very often architecture or platform specific
Offers specific facilities

Masking/unmasking individual interrupts
Setting priorities
SMP affinity
Exotic things like wake-up interrupts

GIC-400, simplified view

6 © ARM 2016



Interrupt triggers

Level triggered (high or low)
Indicates a persistent condition
An action has to be performed on the device to clear the interrupt

Edge triggered (rising or falling)
Indicates an event
May have happened once or more...

Some systems do not expose the trigger type to software
Either the interrupt is abstracted (virtualization)
Or this is more an exception than an interrupt...

7 © ARM 2016



“And now for something completely
different...”

Monty Python’s Flying Circus

8 © ARM 2016



How does Linux deal with interrupts

struct irq_chip
A set of methods describing how to drive the interrupt controller
Directly called by core IRQ code

struct irqdomain
A pointer to the firmware node for a given interrupt controller (fwnode)
A method to convert a firmware description of an IRQ into an ID local to this interrupt controller (hwirq)
A way to retrieve the Linux view of an IRQ from the hwirq

struct irq_desc
Linux’s view of an interrupt
Contains all the core stuff
1:1 mapping to the Linux interrupt number

struct irq_data
Contains the data that is relevant to the irq_chip managing this interrupt

Both the Linux IRQ number and the hwirq
A pointer to the irq_chip
Embedded in irq_desc (for now)

9 © ARM 2016



In a nutshell

CPU gets an interrupt
Find out the hwirq from the interrupt controller

Usually involves reading some HW register

Look-up the irq_desc into the irqdomain using
the hwirq

Actually returns an IRQ number, which is equivalent to the
irq_desc

The core kernel then handles the interrupt

irqdomain

irq_chip

hwirq

fwnode

In
te

rr
u
p
t 
C

o
n
tr

o
lle

r

Device

Device

irqdesc

10 © ARM 2016



Multiplexing more interrupts

Not enough interrupts lines?
Dedicate a single line for a secondary interrupt controller
And add more stuff to it!

Requires two level handling
First handle the interrupt on the primary interrupt controller
Then at the secondary one to find out which device has
caused the interrupt
See irq_set_chained_handler_and_data,
chained_irq_enter, chained_irq_exit
Never treat this as a normal interrupt handler

Used in each and every x86 system
The infamous i8259 cascade

You can also share a single interrupt between devices
And that really stinks. Please avoid doing it if possible.

Device

Device

Device

Device

In
te

rr
u

p
t 

C
o

n
tr

o
lle

r

In
te

rr
u

p
t 

C
o

n
tr

o
lle

r

CPU

11 © ARM 2016



Chained irqchips, the irqdomain view

Each interrupt controller has its own
irqdomain
The kernel deals with two interrupts

and two interrupt handlers
the first one being a chained handler
convention is to stash a pointer to the secondary
domain inside the top-level irq_desc

We walk the interrupt chain in reverse order

Once we reach the last level irq_desc, we
can process the actual interrupt handler

Device

Device

irqdomain

irq_desc

irq_desc

Device

irq_chip

irq_chip

Device

In
te

rr
u

p
t 

C
o

n
tr

o
lle

r

In
te

rr
u

p
t 

C
o

n
tr

o
lle

r

hwirq

hwirq

irqdomain

CH

12 © ARM 2016



The DT view

A secondary irqchip points to the one
implementing the first level

Use interrupts to describe the signal path
between irqchips
The secondary chip owns the cascade interrupt
It doesn’t appear in /proc/interrupts

Use interrupt-parent to point the
device at the right interrupt controller

1 interrupt-parent = <&gic>;
2

3 gic: interrupt-controller@01c81000 {
4 compatible = "arm,cortex-a7-gic", "arm,cortex-a15-gic";
5 interrupt-controller;
6 #interrupt-cells = <3>;
7 interrupts = <GIC_PPI 9 (GIC_CPU_MASK_SIMPLE(4) |
8 IRQ_TYPE_LEVEL_HIGH)>;
9 };

10

11 nmi_intc: interrupt-controller@01c00030 {
12 compatible = "allwinner,sun7i-a20-sc-nmi";
13 interrupt-controller;
14 #interrupt-cells = <2>;
15 interrupts = <GIC_SPI 0 IRQ_TYPE_LEVEL_HIGH>;
16 };
17

18 axp209: pmic@34 {
19 interrupt-parent = <&nmi_intc>;
20 interrupts = <0 IRQ_TYPE_LEVEL_LOW>;
21 };

13 © ARM 2016



When multiplexing doesn’t fit

There is more than just cascading irqchips
Some setups have a 1:1 mapping between input
and output

Interrupt routers
Wake-up controllers
Programmable line inverters

Most of them are not interrupt controllers
Still, they do impact the interrupt delivery
We choose to represent them as irq_chip

This is a hierarchical/stacked configuration

The chained irqchip paradigm doesn’t match it

In
te

rr
u
p
t 
C

o
n
tr

o
lle

r

Device

Device

In
te

rr
u
p
t 
C

o
n
tr

o
lle

r

CPU

14 © ARM 2016



Hierarchical (stacked) IRQ domains
We want the same irq_desc to be valid
across all irqchips

This ensures that the Linux IRQ number is unique
for a given signal path

For a given irq_desc, each irqchip should
be responsible for the hwirq

This fits the irq_data properties

Most of the data structures now have a
parent field representing the hierarchy
The handling is done by walking the signal
path in delivery order

A given irqchip can perform some local action
before forwarding the request to its parent
Or even terminate the handling early

In
te

rr
u
p
t 
C

o
n
tr

o
lle

r

Device

Device

In
te

rr
u
p
t 
C

o
n
tr

o
lle

r

irq_desc

irqdomainirqdomain

irq_chipirq_chip irq_chip

irq_datairq_data parent

parent

hwirq

15 © ARM 2016



Hierarchical domains, the DT view

Each intermediate irqchip points to its
parent

Do not use interrupts to describe the
signal path between irqchips
Use a device-specific property to decribe an
interrupt range/space if necessary

The root irqchip points to itself
A DT oddity...

Devices can point to any element of the
stack

The device interrupt specifiers must match the
first irqchip in the signal path

1 interrupt-parent = <&sysirq>;
2

3 sysirq: intpol-controller@10200620 {
4 interrupt-controller;
5 #interrupt-cells = <3>;
6 interrupt-parent = <&gic>;
7 };
8

9 gic: interrupt-controller@10231000 {
10 #interrupt-cells = <3>;
11 interrupt-parent = <&gic>;
12 interrupt-controller;
13 };
14

15 uart0: serial@11002000 {
16 interrupts = <GIC_SPI 91 IRQ_TYPE_LEVEL_LOW>;
17 };

16 © ARM 2016



“Message in a bottle”

The Police, Reggatta de Blanc

17 © ARM 2016



More than wired interrupts: MSIs

Message Signaled Interrupts are an essential part of the interrupt infrastructure
A simple 32bit write (the message) from the device to a doorbell

The doorbell is usually the interrupt controller itself
The generated interrupt depends on the data being written
By definition edge triggered

Avoid the spider web syndrome
Routing interrupts to the periphery of a SoC is a constraint
MSIs allows the use of the same busses as the data
Having multiple interrupts per device costs nothing

Acts as a memory barrier w.r.t DMA
Avoid the “got an interrupt but data is not there yet” problem

Bus agnostic
Historically tied to PCI(e)
Now implemented on all kinds of busses...

18 © ARM 2016



The goals of supporting MSIs in a generic way

We’d like to support MSIs on any bus
We want to cater for the weird and wonderful stuff

Intel’s DMAR
ARM’s GICv3 ITS
Freescale’s MC bus
Platform devices
Hisilicon’s MBIGEN

Must nicely cohabit with the current PCI/MSI implementation
Hierarchical domains are a good solution for this2

Entirely implemented as part of the core IRQ code (kernel/irq/msi.c)
Per-bus front-ends

drivers/pci/msi.c
drivers/base/platform-msi.c
drivers/staging/fsl-mc/bus/mc-msi.c

2Please trust me on that one...

19 © ARM 2016



Generic MSI
irq_chip grows two new methods

irq_compose_msi_msg: populate a msi_msg
Address of the doorbell + data to be written
Implemented by the MSI controller, bus agnostic

irq_write_msi_msg
Write the content of the msi_msg to a given device
Implemented by the bus front-end, bus specific

msi_domain_info to describe a MSI domain
A struct irq_chip

Must at least contain a irq_write_msi_msg method

A struct msi_domain_ops
A set of functions used to build an irqdomain

A set of flags (some bus specific), and allowing most of
the above to get sensible defaults

Bus specific irqdomain creation functions

1 /*
2 * PCI/MSI setup
3 */
4 static struct irq_chip my_msi_irq_chip = {
5 .name = "MSI",
6 .irq_eoi = irq_chip_eoi_parent,
7 .irq_write_msi_msg = pci_msi_domain_write_msg,
8 };
9

10 static struct msi_domain_info my_msi_dom_info = {
11 .flags = (MSI_FLAG_USE_DEF_DOM_OPS |
12 MSI_FLAG_USE_DEF_CHIP_OPS |
13 MSI_FLAG_PCI_MSIX),
14 .chip = &my_msi_irq_chip,
15 };
16

17 [...]
18 /*
19 * Build the PCI/MSI domain on top of the IRQ domain
20 * representing the MSI hardware
21 */
22 pci_domain = pci_msi_create_irq_domain(fwnode,
23 &my_msi_dom_info,
24 irq_domain);

20 © ARM 2016



Generic MSI
irq_chip grows two new methods

irq_compose_msi_msg: populate a msi_msg
Address of the doorbell + data to be written
Implemented by the MSI controller, bus agnostic

irq_write_msi_msg
Write the content of the msi_msg to a given device
Implemented by the bus front-end, bus specific

msi_domain_info to describe a MSI domain
A struct irq_chip

Must at least contain a irq_write_msi_msg method

A struct msi_domain_ops
A set of functions used to build an irqdomain

A set of flags (some bus specific), and allowing most of
the above to get sensible defaults

Bus specific irqdomain creation functions

1 /*
2 * platform-msi setup
3 */
4 static struct irq_chip my_pmsi_irq_chip = {
5 .name = "pMSI",
6 };
7

8 static struct msi_domain_ops my_pmsi_ops = {
9 };

10

11 static struct msi_domain_info my_pmsi_dom_info = {
12 .flags = (MSI_FLAG_USE_DEF_DOM_OPS |
13 MSI_FLAG_USE_DEF_CHIP_OPS),
14 .ops = &my_pmsi_ops,
15 .chip = &my_pmsi_irq_chip,
16 };
17

18 [...]
19 /*
20 * Build the platform-msi domain on top of the IRQ domain
21 * representing the MSI hardware
22 */
23 plat_domain = platform_msi_create_irq_domain(fwnode,
24 &my_pmsi_dom_info,
25 irq_domain);

20 © ARM 2016



Generic MSI in pictures

At configuration time
The MSI controller irqchip composes the message
The bus-specific irqchip programs the device

Everything is just like the stacked irqchip
scenario

The only notable difference is that we have a
bus-specific irqdomain that doesn’t correspond to
any HW
Its main function is to cater for different
programing interfaces at the device level

irq_desc

irq_chipirq_chip irq_chip

In
te

rr
u
p
t 
C

o
n
tr

o
lle

r

irq_datairq_data parent

hwirq

Device

Device

bus−specific
irqdomain

irqdomain

parent

21 © ARM 2016



A platform MSI special

There is no such thing as a “standard”
platform device

No way to implement a
irq_write_msi_msg in a standard way
Worked around by providing it at allocation
time

The function is per-device
Allows for any crazy stuff

1 static void arm_smmu_write_msi_msg(struct msi_desc *desc,
2 struct msi_msg *msg)
3 {
4 doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
5

6 writeq_relaxed(doorbell, smmu->base + cfg[0]);
7 writel_relaxed(msg->data, smmu->base + cfg[1]);
8 }
9

10 static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
11 {
12 [...]
13 ret = platform_msi_domain_alloc_irqs(dev, nvec,
14 arm_smmu_write_msi_msg);
15 [...]
16 for_each_msi_entry(desc, dev) {
17 switch (desc->platform.msi_index) {
18 /* request desc->irq */
19 }
20 }
21 }

22 © ARM 2016



“I’m going slightly mad”

Queen, Innuendo

23 © ARM 2016



The interrupt strikes back

Just as we thought we had fixed the world by
giving MSIs to everyone...

People now build wired interrupt
controllers...
... that use MSI as their transport

Allows wired devices to be placed far away from
the irqchip
Conveniently, one MSI per wire

Stacked domains to the rescue!
The irqchip is a MSI-capable device
We can give it its own irqdomain irq_chipirq_chip irq_chip

In
te

rr
u

p
t 

C
o

n
tr

o
lle

r

Device

Device

irq_desc

irq_datairq_data

irq_chip

irq_dataparent

hwirq

irqdomain
irqdomain

parent

w
ir
e

d
−

m
s
i 
b

ri
d

g
e

parent

irqdomain
parent plat−MSI

24 © ARM 2016



Wire-MSI bridges, the programatic view

At probe time, create a device-specific domain

Automatically attached to the device’s
msi-parent’s own domain

When allocating its MSIs, place them in that
domain

Dish out wired interrupts as a normal irqchip

1 static struct irq_domain_ops mbigen_domain_ops = {
2 [...]
3 };
4
5 static int mbigen_irq_domain_alloc(struct irq_domain *domain,
6 unsigned int virq,
7 unsigned int nr_irqs,
8 void *args)
9 {

10 struct irq_fwspec *fwspec = args;
11
12 mbigen_domain_translate(domain, fwspec, &hwirq, &type);
13 platform_msi_domain_alloc(domain, virq, nr_irqs);
14 mgn_chip = platform_msi_get_host_data(domain);
15
16 for (i = 0; i < nr_irqs; i++)
17 irq_domain_set_hwirq_and_chip(domain, virq + i, hwirq + i,
18 &mbigen_irq_chip, mgn_chip->base);
19 }
20
21 static struct irq_domain_ops mbigen_domain_ops = {
22 .alloc = mbigen_irq_domain_alloc,
23 };
24
25 static int mbigen_device_probe(struct platform_device *pdev)
26 {
27 [...]
28 domain = platform_msi_create_device_domain(&child->dev,
29 num_pins,
30 mbigen_write_msg,
31 &mbigen_domain_ops,
32 mgn_chip);
33 }

25 © ARM 2016



IRQ domains, as seen on arm64...

26 © ARM 2016



IRQ domains, as seen on arm64...

GICv3

26 © ARM 2016



IRQ domains, as seen on arm64...

GICv3ITS

26 © ARM 2016



IRQ domains, as seen on arm64...

GICv3

plat−MSI

PCI/MSI

ITS

26 © ARM 2016



IRQ domains, as seen on arm64...

GICv3

plat−MSI

PCI/MSI

ITS

msi bridge

PCI legacy

26 © ARM 2016



IRQ domains, as seen on arm64...

Wired int

Wired int
GICv3

plat−MSI

PCI/MSI

ITS

msi bridge

PCI legacy

PCIe RC

Plat−MSI stuff

26 © ARM 2016



IRQ domains, as seen on arm64...
msi bridge

msi bridge

Wired int

Wired int

Wired int

GICv3

plat−MSI

PCI/MSI

ITS

PCI legacy

PCIe RC

Plat−MSI stuff

plat−MSI

PCI/MSI

ITS

PCI legacy

PCIe RC

Plat−MSI stuff

...
26 © ARM 2016



Thank you!

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM limited

(or its subsidiaries) in the EU and/or elsewhere. All rights reserved. All other marks featured may be

trademarks of their respective owners.

Copyright © 2016 ARM Limited

© ARM 2016


	
	Content
	
	Talk you should not have missed
	What is an interrupt?
	Multiplexing interrupts
	Interrupt triggers
	
	How does Linux deal with interrupts
	In a nutshell
	Multiplexing more interrupts
	Chained irqchips, the irqdomain view
	The DT view
	When multiplexing doesn't fit
	Hierarchical (stacked) IRQ domains
	Hierarchical domains, the DT view
	
	More than wired interrupts: MSIs
	The goals of supporting MSIs in a generic way
	Generic MSI
	Generic MSI in pictures
	A platform MSI special
	
	The interrupt strikes back
	Wire-MSI bridges, the programatic view
	IRQ domains, as seen on arm64...
	

