SERVER-SIDE RENDERING ISN'T ENOUGH

node




MATTHEW PHILLIPS
A done|s

GITHUB.COM/CANJS/CAN-SSR


http://donejs.com/
https://github.com/canjs/can-ssr

TERMS

e Shared codebase
e [somorphic
e Universal



WHY BOTHER

Perceived performance: no
one likes staring at a spinner.

This sucks

SEOQ: if you care about that
sort of thing, it helps. Not
every bot is Googlebot.

BLING BLING: Amazon
reports that conversion
increased by 1% for every
100ms improvement.



THE STATE OF SERVER RENDERING



EVERYTHING SHOULD BE SERVER RENDERED

ALL THE THINGS!

|

S——C0)

9,




REQUIREMENTS
PERFORMANCE

e Rendering speed
e Onlyincludes the assets needed (CSS and JavaScript)
e Prevents unnecessary requests in the client

MAINTAINABILITY

e Shared router
e Asynchronous rendering
e Fast development experience with hot module swapping



RENDERING PERFORMANCE



HEADLESS BROWSER

PhantomJS

e Consumed a lot of memory
e Needed pooling
e Very fast



VIRTUAL DOMS

e Run the same code on the client and server
e Run within a single Node context
e Renderingis usually synchronous



CAN-SSR'S VDOM

Looks like a real DOM, only the basics



DEMO COMPATIBILITY



MINIMIZING REQUEST SIZE



TRADITIONAL METHOD
CSS LOADED IN JAVASCRIPT

Title

1. Initially unstyled

2. Main, site-wide style is loaded

3. Page specific style is loaded
progressively.



WITH SERVER TEMPLATE

ADDING CSS MANUALLY

1. Initially partially styled; main CSSis

Title

included, most of the page-specific
CSS.

2. Rest of page-specific styles are
added.




WITH DONEJS

CAN-SSR DOES IT FOR YOU

[ /cart

Title

1. All styles needed for the page are
included directly in the head.

e And only the styles needed for
the page.



COMPONENT-BASED ARCHITECTURE

import Framework from 'fancy-framework';
import './styles.scss';




MINIMIZING THE NUMBER OF REQUESTS



PREVENT REDUNDANT REQUESTS

e Embed responses into the rendered page.
e Canbereusedon theclient to doinitial
rendering.

<script>
INLINE CACHE = {"users": [{ ...

</script>




SHARED CODE-BASE



HOW MUCH CODE IS SHARED?
MINIMIZING DIFFERENCES FOR EASIER MAINTAINENCE

e The "main" canrunon both client and in
Node.

e Ashared router, not adding new routes in
separate places



EXAMPLE

Middleware

var ssr = require("can-ssr/middleware");
var app = require("express")();

app.use(ssr());

Core API

var ssr = require('"can-ssr'");
var render = ssr();
render("/cart").then(function(result) {

console.log(result.html);

})i




ASYNCHRONOUS RENDERING



SYNCHRONOUS RENDERING

e Forces all data to be present
before rendering.

e Cannot use component-
based architecture.

e Pushes application logic into
another layer.

e Makes writing reusable
components harder.

// server.js
import render from "framework-dom";

app.get("/cart", function(req, res)({

fetchCart().then(function(data){
res.send(
render (data)
)i
})i

// cart.js
import Component from "fancy-framework";

class Cart extends Component {
render () {
let data = this.props.data;

return <div> ... </div>




DEMO ASYNCHRONOUS REACT



HTTPS://GITHUB.COM/CANJS/CAN-WAIT


https://github.com/canjs/can-wait

INSTANT DEV WORKFLOW
HOT MODULE REPLACEMENT



DEMO DONES LIVE-RELOAD



THE END
BY MATTHEW PHILLIPS

E— 11101 f
= LES | |
L “1\




