
Measuring the impacts of the Preempt-RT patch

maxime.chevallier@smile.fr

October 25, 2017



RT Linux projects

Simulation platform : bi-xeon, lots ot RAM
200µs wakeup latency, networking

Test bench : Intel atom
1s max latency, I/O and networking

Embedded telematic board : i.mx6q
Never lose incoming data

Image processing : Intel i3
Process each frame with a deadline



What is a RTOS ?

Real Time : Determinism

Bounded Latencies
We need guaranties on the reaction time

RT Scheduler
We want absolute priorities for the tasks

Handle the complex cases
Priority Inversion, Starvations, etc.



Linux

We have :

RT Scheduler SCHED FIFO, SCHED RR, SCHED DEADLINE

PI mutexes futex, rt-mutex

Preemptible kernel (almost)

High resolution timers nanosleep

We lack :

Full kernel preemption
A lot of critical sections are present

Some worst case scenario optimisations
Mostly arch/driver specific, to be mainlined



Preempt RT - Internals

Force threaded interrupts
Allows to prioritize interrupt handlers

Make locks sleepable and RT-aware
rt spinlocks, rt mutexes, semaphores, RCU

Remove critical sections
Avoid disabling preemption, interrupts, spinlocks, etc.



What about non-RT tasks ?

The kernel internals are changed

Kernel-userspace API/ABI stays the same

We have what is left of the resources :

SCHED OTHER runs when no RT tasks run, whatever their
priority
User configuration might dedicate some resources to RT tasks



Firt steps

Am I really running the RT patch ? uname -a
cat /sys/kernel/realtime

More tasks are running htop
Threaded IRQs - beware of load-avg



perf

Performance analysis tool for Linux (from manpage)

Uses the kernel performance counters

Generate traces

Versatile tool :

debugging
profiling
benchmarking



perf - Vanilla linux

ping -f <ip> -c 1000000
3.26% ping raw spin lock irqsave
2.40% ping entry SYSCALL 64

2.33% ping raw spin lock

2.26% ping fib table lookup

1.87% ping insert work

1.62% ping raw spin unlock irqrestore

1.60% ping ip route output key hash

1.56% ping netif receive skb core

1.53% ping queue work on



perf - RT Linux

ping -f <ip> -c 1000000
5.53% ping check preemption disabled

4.29% ping migrate enable

3.29% ping bitmap equal

2.56% ping migrate disable

2.55% ping rt spin lock
2.30% ping preempt count add

2.29% ping rt spin unlock
1.81% ping entry SYSCALL 64

1.28% ping preempt count sub



pidstat, vmstat, mpstat

Event analysis tools

Analyse context switching

Interruptions

Cache misses

Page faults

branch prediction



*stat

vmstat 1
r in cs

1 2841 696381

2 2134 686653

2 1511 740010

pidstat -w 1
cswch/s nvcswch/s Command

70443 76 stress-ng-fifo

70571 61 stress-ng-fifo

70587 52 stress-ng-fifo

vmstat
Global memory stats

mpstat
per processor stats

pidstat
per task stats



Another example : ping -f

vmstat

vanilla
in cs

14363 218

14565 283

14340 91

Preempt RT

in cs

14414 29091

14397 29052

14390 29007

mpstat -w

cswch/s Command

14280 irq/35-enp14s0

Effect of threaded interrupts

iperf show no bandwidth difference

This IRQ can now be prioritized



Another example : ping -f

vmstat

vanilla
in cs

14363 218

14565 283

14340 91

Preempt RT

in cs

14414 29091

14397 29052

14390 29007

mpstat -w

cswch/s Command

14280 irq/35-enp14s0

Effect of threaded interrupts

iperf show no bandwidth difference

This IRQ can now be prioritized



Another example : ping -f

vmstat

vanilla
in cs

14363 218

14565 283

14340 91

Preempt RT

in cs

14414 29091

14397 29052

14390 29007

mpstat -w

cswch/s Command

14280 irq/35-enp14s0

Effect of threaded interrupts

iperf show no bandwidth difference

This IRQ can now be prioritized



Another example : ping -f

vmstat

vanilla
in cs

14363 218

14565 283

14340 91

Preempt RT

in cs

14414 29091

14397 29052

14390 29007

mpstat -w

cswch/s Command

14280 irq/35-enp14s0

Effect of threaded interrupts

iperf show no bandwidth difference

This IRQ can now be prioritized



stress-ng

stress-ng

Has stressors for a lot of components

Can be used as a ’rough’ benchmarking tool

use --XXX-ops and compare execution time

Beware, extreme scenarios unlikely to happen in real-life

stressor
cpu

fault

fifo

futex

hdd

vanilla
11.23 s

8.94 s

8.24 s

13.11 s

8.75 s

preempt RT
11.26 s

14.51 s

69.44 s

7.85 s

8.88 s



stress-ng

stress-ng

Has stressors for a lot of components

Can be used as a ’rough’ benchmarking tool

use --XXX-ops and compare execution time

Beware, extreme scenarios unlikely to happen in real-life

stressor
cpu

fault

fifo

futex

hdd

vanilla
11.23 s

8.94 s

8.24 s

13.11 s

8.75 s

preempt RT
11.26 s

14.51 s

69.44 s

7.85 s

8.88 s



stress-ng

stress-ng

Has stressors for a lot of components

Can be used as a ’rough’ benchmarking tool

use --XXX-ops and compare execution time

Beware, extreme scenarios unlikely to happen in real-life

stressor
cpu

fault

fifo

futex

hdd

vanilla
11.23 s

8.94 s

8.24 s

13.11 s

8.75 s

preempt RT
11.26 s

14.51 s

69.44 s

7.85 s

8.88 s



stress-ng

stress-ng

Has stressors for a lot of components

Can be used as a ’rough’ benchmarking tool

use --XXX-ops and compare execution time

Beware, extreme scenarios unlikely to happen in real-life

stressor
cpu

fault

fifo

futex

hdd

vanilla
11.23 s

8.94 s

8.24 s

13.11 s

8.75 s

preempt RT
11.26 s

14.51 s

69.44 s

7.85 s

8.88 s



Performance impacts : Preempt-RT

Syscalls : Expect an overhead

Locks : Futexes are made faster

Fifos, mqueues, pipes : Tend to get slower



Performance impacts : Platform-dependent tweaking

CPU Idle states : Use Poll or C1
Increase power consumption

Dynamic Voltage and Frequency Scaling : Use a fixed frequency
Might increase power consumption

Hyperthreading : Disable it
Less processing power



cpuidle, cpufreq

cpuidle in sysfs : /sys/devices/system/cpu/cpuX/stateY/

name

latency : wakeup latency

residency : sleep time needed to enter

power : power consumed in that state

powertop
Allows to see C-state and frequency usage



Useful resources

Who needs a Real-Time Operating System (Not You!)
Steven Rostedt, Kernel Recipes 2016

Understanding a Real-Time System (More than just a kernel)
Steven Rostedt, Kernel Recipes 2016

SCHED DEADLINE: It’s Alive!
Juri Lelli, ELC 2016

Real-Time Linux on Embedded Multicore Processors
Andreas Ehmanns, ELC 2016

IRQs: the Hard, the Soft, the Threaded and the Preemptible
Alison Chaiken, ELCE 2016



That’s it

Thank you !


