
RTMux:
A Thin Multiplexer To Provide Hard Realtime

Applications For Linux

Jim Huang (黃敬群) <jserv.tw@gmail.com>
Oct 15, 2014 / Embedded Linux Conference Europe

mailto:jserv.tw@gmail.com

Agenda

Mission: Build lightweight real-time environments for Linux/ARM

Review of existing technologies

RTMux: Resource-Multiplexing Real-time Executive

Linux-friendly remote communication mechanisms

Full source available: https://github.com/rtmux

This work is sponsored by ITRI Taiwan and Delta Electronics

Mission:
Build Lightweight Real-time environments

for Linux/ARM Applications

In short words, it is LOVER

LOVER =
Linux Optimized for Virtualization,

Embedded, and Realtime

Use Case for RTMux

Quadcopter with Computer Vision

Use Case for RTMux

Quadcopter with Computer Vision

Hard real-time

Autonomous Flight Modes (Landing/Take-off)

altitude control, feedback-loop control, RC

Autopilot, autonomous navigation

Soft real-time

Stream real-time flight data on-screen over video

Parallel Tracking and Mapping (PTAM) , and the
detected walls are visualized in 3D with mapped textures.

Source: https://github.com/nymanjens/ardrone-exploration

External Autonomous Navigation

Various Flight Modes-Stabilize, Alt Hold, Loiter, Auto Mode.

For the AUTO mode, GPS is necessary.

Waypoints are set in advance.

Internal Autonomous Navigation

GPS fails in a closed-door environment.

Detect a door/window and go out where GPS access is present.

Design a controller for navigation of quadcopter from indoor to outdoor
environsments.

SONAR and Computer vision

Source: http://wiki.ros.org/tum_ardrone

RTMux:
Multiplexer for Linux-based

Real-time Applications

Applications

Linux

Device
Drivers

Real-time
Executive

RTOS

De-privileged

Privileged

RTMux

Powered by Open Source Stack

RTMux

RTOS

Linux application

olibc

POSIX application
(Real-time)

minilibc
POSIX

Runtime

Linux application

glibc

VFS Network

Memory ...

System calls

Linux Kernel

V-Bus

ARM core

olibc: http://www.slideshare.net/jserv/olibc

Embedded Linux Conference 2013

Review of Existing Technologies

Realtime Performance

(Standard) LinuxReal-time LinuxCustomized Realtime kernel

One (physical)
address space with n-tasks

Application program 100% source compatibility
better binary compatibility

API

Response time: < 10 µs Response time: ~1ms

Response time: < 10 µs
same

homogeneity

One process address space
with n-threads

All tasks have
one common API
implemented by

 one common library

All threads of a process have
one common API
implemented by

 one common library

Real-time Approaches

Two major approaches real time Linux

rt-preempt (PREEMPT_RT patch)

Allows preemption, so minimize latencies

Execute all activities (including IRQ) in
“schedulable/thread” context

Many of the RT patch have been merged

Linux (realtime) extensions

Add extra layer between hardware and the Linux kernel
to manage real-time tasks separately

Preemptive Kernel

non-preemptive system preemptive system

A concept linked to that of real time is preemption: the ability of a system to
interrupt tasks at many “preemption points”.The longer the non-interruptible
program units are, the longer is the waiting time (‘latency’) of a higher priority
task before it can be started or resumed. GNU/Linux is “user-space
preemptible”: it allows user tasks to be interrupted at any point. The job of real-
time extensions is to make system calls preemptible as well.

Part I: Linux real-time preemption

http://www.kernel.org/pub/linux/kernel/projects/rt/

led by kernel developers including Ingo Molnar, Thomas Gleixner, and
Steven Rostedt

Large testing efforts at RedHat, IBM, OSADL, Linutronix

Goal is to improve real time performance

Configurable in the Processor type and features (x86), Kernel
Features (arm) or Platform options (ppc)...

http://www.kernel.org/pub/linux/kernel/projects/rt/

Wrong ideas about real-time preemption

It will improve throughput and overall performance
Wrong: it will degrade overall performance.

It will reduce latency
Often wrong. The maximum latency will be reduced.

The primary goal is to make the system predictable
and deterministic.

PREEMPT_RT: complete RT preemption

Replace non-preemptible constructs with preemptible ones

Make OS preemptible as much as possible

except preempt_disable and interrupt disable

Make Threaded (schedulable) IRQs

so that it can be scheduled

spinlocks converted to mutexes (a.k.a. sleeping spinlocks)

Not disabling interrupt and allows preemption

Works well with thread interrupts

Toward complete RT preemption

Most important aspects of Real-time

Controlling latency by allowing kernel to be preemptible
everywhere

original Linux Kernel

User Space

User Context

Interrupt Handlers

Kernel
Space

Interrupt
Context SoftIRQs

H
i prio

ta
sklet s

N
etw

o
r k

S
tack

T
im

e
r s

R
eg

u
la

r
ta

sklet s
...

Scheduling
Points

Process
Thread

Kernel
Thread

PREEMPT_RT

User Space

SO_NODELAY Interrupt Handlers

Kernel
Space

N
e

tw
o

r k S
tac k

T
im

e
rs

Tasklet s
Scheduling
Points

Process
Thread

Kernel
Threads

Threaded Interrupts

Handle interrupt by interrupt handler thread

Interrupt handlers run in normal kernel threads

Priorities can be configured

Main interrupt handler

Do minimal work and wake-up the corresponding thread

Thread interrupts allows to use sleeping spinlocks

in PREEMPT_RT, all interrupt handlers are switched to threaded
interrupt

Threaded Interrupts
The vanilla kernel

Interrupts as threads

Real world behavior

Benchmarking
cyclictest

measuring accuracy of sleep and wake operations of highly
prioritized realtime threads

https://rt.wiki.kernel.org/index.php/Cyclictest

vanilla kernel

PREEMPT_RT

https://rt.wiki.kernel.org/index.php/Cyclictest

Part II: Linux hard real-time extensions
Three generations

RTLinux

RTAI

Xenomai

A common principle

Add a extra layer between the
hardware and the Linux
kernel, to manage real-time
tasks separately.

Hardware

Micro/Nano-kernel

Linux
kernel

real­time
tasks

real-time
tasks

Interrupt Response Time

ConfigurationConfiguration AvgAvg MaxMax MinMin

XENOMAIXENOMAI 4343 5858 22

PREEMPTPREEMPT 8888 415415 2727

Hardware: Freescale i.MX53 ARM Cortex-A8
processor operating at 1GHz.
Time in micro second.

PREEMPT: standard kernel with
CONFIG_PREEMPT (“Preemptible Kernel
(Low-Latency Desktop)) enabled
cyclictest –m ­n ­p99 ­t1 ­i10000
­1360000

XENOMAI: Kernel + Xenomai 2.6.0-rc4 + I-Pipe
1.18-03
cyclictest ­n ­p99 ­t1 ­i10000
­1360000

Xenomai project

http://www.xenomai.org/

Started in the RTAI project
(called RTAI / fusion).

Skins mimicking the APIs of traditional
RTOS such as VxWorks, pSOS+, and VRTXsa.

Initial goals: facilitate the porting of programs from traditional
RTOS to RTAI on GNU / Linux.

Now an independent project and an alternative to RTAI.
Many contributors left RTAI for Xenomai, frustrated by its
goals and development style.

http://www.xenomai.org/

Xenomai architecture

Adeos i-pipe

Xenomai RTOS
(nucleus)

VxWorks application

glibc
Xenomai

libvxworks

POSIX application

glibc
Xenomai

libpthread_rt

Linux application

glibc

VFS Network

Memory ...

System calls

Linux
kernel space

Pieces added
by Xenomai

Xenomai
skins

ipipe = interrupt pipeline

Original Linux

User space

Kernel space

Low prio

high prio

Li
nu

x
sc

he
du

le
r

main Linux thread

pthread_create
Runs in User Mode :

can only address user space

Linux
syscall

readfile(..), printf(..)

Kernel
moduleKernel

module

Kernel
module

Linux
Kernel

Communicates with
terminal to display text of

printf

filesystem module
communicates with

harddisk to read the file

Kernel
module

Xenomai (kernel space)

User space Kernel space

Low prio

high prio

not
realtime

hard
realtime

Li
nu

x
sc

he
du

le
r

R
ea

l-t
im

e
 s

ch
ed

u
le

r

RT task

 Kernel module
 init_module()

rt_task_start
Xenomai
Kernel

function
 call

Linux
Kernel

Shell :
insmod <module>

Runs in Kernel Mode :
can address User and Kernel space

Xenomai (user space)

User space Kernel space

Low prio

high prio

L
in

ux
 s

ch
ed

ul
er

R
ea

l-t
im

e
 s

ch
ed

ul
er

FIFO

Sched
other

main Linux thread

rt_thread_create

Xenomai task

Xenomai task

rt_task_create, rt_task_start

Linux
syscall

Runs in User Mode :
can only address user space

Xenomai
Kernel

xenomai
syscall

Linux
Kernel

Linux
syscall

 hard
realtime

 soft
realtime

ipipe = Interrupt pipeline abstraction

guest OSes are regarded as prioritized domains.

For each event (interrupts, exceptions, syscalls, ...), the various
domains may handle the event or pass it down the pipeline.

Xenomai internals: ipipe

If a real time domain (like Xenomai) has higher priority it is the
first in the pipeline

It will receive interrupt notification first without delay (or at
least with predictable latency)

Then it can be decided if interrupts are propagated to low
priority domains (like Linux) or not

i-pipe: Optimistic protection scheme

The high priority domain is at the beginning of the pipeline, so
events are delivered first to it

This pipeline is referred as interrupt pipeline or I-pipe

There is a pipeline for each CPU

Interrupt pipeline (1)

The Linux domain is always the root domain, whatever is its
position in the pipeline

Other domains are started by the root domain

Linux starts and loads the kernel modules that implement other
domains

Interrupt pipeline (2)

virtualized interrupts disabling
Each domain may be “stalled”, meaning that it does not accept
interrupts.

Hardware interrupts
are not disabled
 however (except
 for the domain
 leading the pipeline),
 instead the interrupts
 received during that
 time are logged and
 replayed when the
 domain is unstalled.

Real-Time Scheduler

Xenomai extends the Linux kernel
and is integrated as part of OS.

A task with a period = 15 us, shown in
light blue.

While this real-time task is not being
executed, Xenomai invokes the
regular Linux scheduler which
executes tasks as normal, shown in
dark green.

LinuxLinux XenomaiXenomai

struct
task_struct

struct
xnthread

mapped

Problems about Xenomai 2

Large Linux modifications are required to enable ipipe

(diffstat output)

ksrc/arch/arm/patches/ipipe­core­3.14.17­arm­4.patch

271 files changed, 14218 insertions(+), 625 deletions(­)

Maintenance and incompatibility issues

POSIX skin

Xenomai 3 is supporting PREEMPT_RT, but the real-time
performance is as good as dual-kernel approach

RTMux: Our Real-time Solution
(Lightweight and easier to maintain)

RTMux Goals

Utilize the existing Linux mechanisms as possible

400 LoC modifications!

Lightweight hypervisor for both Linux and RTOS

Of course, open source: https://github.com/rtmux

Hypervisor: GPLv2

RT-Thread: GPLv2

Real-time domain vs. Linux

RTMux + V-BusRTMux + V-Bus

RT-Thread
Linux Kernel

V-Bus: cross Virtual-machine Bus

RTMux + V-BusRTMux + V-Bus

Ring-buffer for V-Bus

Linux communications via V-Bus

Minimal patch is required to enable RTMux

$ diffstat rtmux/patches/0001­RTMux.patch

 Kconfig | 1

 Makefile | 1

 common/gic.c | 67 +++++++++++++++++++++++

 include/asm/assembler.h | 8 ++

 include/asm/domain.h | 7 ++

 include/asm/irqflags.h | 69 ++++++++++++++++­­­­­­­­

 include/asm/mach/map.h | 5 +

...

 21 files changed, 568 insertions(+), 27 deletions(­)

Hardware Support

ARM Cortex-A8 is supported

Verified on Realview Cortex-A8 and Beaglebone Black

No VE (virtualization extension) required

Virtual IRQ

Create mappings for VMM, which shares memory regions
with Linux

Since the device is actually a plain memory with its
functionalities emulated, the multiplex could be
easily implemented as following:

vmm Linux

RTOSv_uart

uart

v_uart

v_uart

trap

trap
bind

Guest OS runs in pure user-mode, and RTMux
applies the domain field in the page table to emulate
the privilege level for the guest OS.

1GHz TI Sitara ARM Cortex-A8
processor

512MB DDR3L 400MHz memory

2 x 46 pin expansion headers for
GPIO, SPI, I2C, AIN, Serial, CAN

microHDMI, microSD, miniUSB
Client, USB Host, 10/100 Ethernet

PRU (Programmable Real-time Unit) can
access I/O at 200MHz

one instruction takes 5ns, be very careful
about the timing

write code in assembly

Reference Hardware: Beaglebone Black

write an integer to the PRU register R30 which
takes one instruction (5ns), do some calculations
and checks and repeat the write instruction. The
data are immediately (within 5ns) available at the
output pins and get converted into an analog signal.

 Background
 Measure RT interrupt latency while Linux domain is running vision programs.

 Approach

 Result
Max/Average interrupt latency: 3.567us / 582ns (no load)

Max/Average interrupt latency: 5.191us / 806ns (normal load)

48

Procedure:
1. MCU generates IRQ request per 100us(10K/s).
2. Assert MCU IO in the same time when IRQ

generated.
3. ARM identifies IRQ request and send ack to

MCU. Assert IO in the same time
4. Totally, send 100K times IRQ

Interrupt Latency and Jitter Test

49

Reference Results with Xenomai

User-mode latency
== Sampling period: 1000 us
== Test mode: periodic user­mode task

RTT| 00:00:01 (periodic user­mode task, 1000 us period, priority 99)

RTH|­­­­lat min|­­­­lat avg|­­­­lat max|­overrun|­­­msw|­­­lat best|­­lat worst

RTD| 8.791| 8.999| 22.416| 0| 0| 6.874| 28.333

Kernl-mode latency
RTT| 00:00:00 (in­kernel periodic task, 100 us period, priority 99)

RTH|­­­­­lat min|­­­­­lat avg|­­­­­lat max|­overrun|­­­­lat best|­­­lat worst

RTD| ­0.920| ­0.804| 3.372| 0| ­4.250| 5.167

Conclusion

Linux was not designed as a RTOS

You can get soft real-time with the standard kernel preemption mode.
Most of the latencies will be reduced, offering better quality, but probably
not all of them.

However, using hard real-time extensions will not guarantee that
your system is hard real-time.

Your system and applications will also have to be designed properly (correct priorities, use of
deterministic APIs, allocation of critical resources ahead of time...).

RTMux demonstrates the ability to isolate the real-time domain from
Linux kernel base in minimal changes with simplified partitioning
techniques, suitable for power-efficient ARM cores.

Reference

Soft, Hard and Hard Real Time Approaches with Linux, Gilad Ben-
Yossef

A nice coverage of Xenomai (Philippe Gerum) and the RT patch
(Steven Rostedt):http://oreilly.com/catalog/9780596529680/

Real-time Linux, Insop Song

Understanding the Latest Open-Source Implementations of Real-
Time Linux for Embedded Processors, Michael Roeder

http://oreilly.com/catalog/9780596529680/

	Kernel Development with VirtualBox
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Linux real-time preemption patches
	Wrong ideas about real-time preemption
	New option: complete real-time preemption
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Linux hard real-time extenstions
	Slide 26
	Xenomai project
	Xenomai architecture
	Slide 29
	Slide 30
	Slide 31
	The Adeos interrupt pipeline abstraction
	Slide 33
	Slide 34
	Slide 35
	Adeos virtualized interrupts disabling
	Slide 37
	Xenomai features
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Interrupt Latency & Interrupt Jitter Test
	Slide 49
	Conclusion
	Slide 51

