
Daniele Alessandrelli

OpenIoT Summit North America 2017

Goals of this talk

• Sharing our experience in developing a bootloader and a firmware
management mechanism for MCUs

• Pointing other developers to open-source code they can reuse

• Collecting feedback and stimulating discussion

2

3

Outline

• Quark Bootloader Overview

• Firmware Management (FM) protocol stack

• Secure extension: authenticated firmware upgrades

• Internals: managing Bootloader Data (BL-Data)

• Concluding remarks

4

5

The Quark Bootloader (aka QM-Bootloader)

• Reference bootloader for the Intel® Quark™ microcontroller family

• Intel® Quark™ D2000 Microcontroller (D2000)

• Intel® Quark™ SE Microcontroller C1000 (SE C1000)

• Developed as part of the Intel® Quark™ MCUs Software Stack

• https://github.com/quark-mcu/

• Originally integrated with the Intel® Quark™ Microcontroller Software
Interface (QMSI)

https://github.com/quark-mcu/

6

QM-Bootloader: Features

• Bootstrap features

• System initialization

• Trim code computation

• Restore context from sleep

• Security hardening features

• Root of Trust (RoT) setup

• Firmware Management functionality

• More details later…

7

Quark D2000

• 1 processor core:

• x86 (Lakemont) @ 32MHz

• SRAM

• 8 kB

• Flash

• 32kB + 8kB OTP + 4kB data only

• Peripherals

• UART, I2C, SPI, GPIOs, ADC, etc.

Quark SE C1000

• 2 processor cores:

• x86 (Lakemont) @ 32 MHz

• Sensor Subsystem (ARC) @ 32MHz

• SRAM

• 80 kB

• Flash

• 384 kB + 8 kB OTP

• Peripherals

• UART, I2C, SPI, USB1.1, GPIOs, ADC, etc.

Quark MCUs: Quick Overview

8

Quark MCUs: Flash Layout

Quark D2000

OTP
(8kB)

System
Flash 0
(32kB)

Data
(4kb)

Quark SE C1000

OTP
(8kB)

System
Flash 0
(192kB)

System
Flash 1
(192kB)

9

FM Features

• Multiple transports

• UART and USB

• Firmware upgrades

• Support for signed images

• Other FM functionality

• Key management

• System Information retrieval

• Application erase

FM design goals

• Flash constraints

• Secure FM over UART must fit in OTP
(8kB)

• Modular design / code reuse

• Both for target code and host tools

• Extensibility

• Allow for other transport to be easily
supported

Firmware Management (FM) module

10

11

DFU-based Firmware Management

• DFU is used for sending images and commands to the
device

• The QDA protocol has been defined to enable DFU-
over-UART

QFU image format, block-wise format designed to

• Work with generic DFU tools (e.g., dfu-util)

• Support firmware authentication

QFM protocol, enabling DFU to be used also for
FM operations other than firmware upgrades

• Application erase

• System/Firmware information retrieval

• Key provisioning

FM Protocol Stack: Overview

Layer USB mode UART mode

DFU
payload

Quark Firmware Management (QFM) Protocol /
Quark Firmware Update (QFU) Format

DFU flavor USB/DFU
Quark DFU

Adaptation (QDA)
Protocol

Transport USB XMODEM-CRC

Driver USB device driver UART driver

12

• DFU: Device Firmware Upgrade

• Standard for performing firmware
upgrades over USB

• DFU does not define any specific
image format

• (but it specifies a DFU file suffix,
useful only to the DFU host tool,
which strips it off before downloading
the image to the device)

• DFU provides two main functions:

• DFU_DNLOAD: to transfer (download)
data to the device

• Used for FW upgrades

• DFU_UPLOAD: to transfer (upload)
data from the device

• Used for FW extractions

• Both transfers are block-based

• (all blocks, except the last one, must
use the same block size)

(USB) DFU: Quick Introduction

13

Why DFU?

• Open, well-documented standard

• Already used by many embedded devices

• Designed for resource-constrained devices

• Block-wise transfer/flashing

• Transmission flow controlled by the device

• Reusing existing host tools

• dfu-util (GPLv2)

• No constrains on image format

• We wanted to add our own metadata and authentication mechanism

14

DFU is extended to UART by means of:

• The Quark DFU Adaptation
Protocol (QDA)

• Makes DFU functionality available
over message-oriented transports
(other than USB)

• The XMODEM-CRC protocol

• Old file transfer protocol

• Used to transport QDA packets

• Chosen for its simplicity

FM Protocol Stack: DFU over UART

Layer USB mode UART mode

DFU
payload

Quark Firmware Management (QFM) Protocol /
Quark Firmware Update (QFU) Format

DFU flavor USB/DFU
Quark DFU

Adaptation (QDA)
Protocol

Transport USB XMODEM-CRC

Driver USB device driver UART driver

15

Provide all DFU request/response
messages

• DFU_DETACH

• DFU_DNLOAD

• DFU_UPLOAD

• DFU_GETSTATUS (used for flow control
during downloads)

• DFU_CLRSTATUS (exit from error)

• DFU_ABORT (abort download/upload)

• DFU_GETSTATE

Mimic (some) generic USB
functionality on which DFU relies

• Get device/configuration/interface
descriptors

• Set active alternate settings

QDA: Quark DFU Adaptation layer

QDA usage is not limited to
XMODEM/UART, but it could be
used with any message-oriented
protocol (e.g., UDP)

16

QDA: qm-dfu-util (aka dfu-util-qda)

• QDA/UART support on the host side was also needed

• dfu-util is a well-known host-side tool for USB/DFU

• Open-source (GPLv2)

• http://dfu-util.sourceforge.net/

• Multi-platform (Windows/Linux)

• We forked it, creating qm-dfu-util

• The USB layer (libusb) is replaced with a QDA/UART layer

http://dfu-util.sourceforge.net/

FM Protocol Stack: Our DFU payload

Thanks to USB/DFU and QDA we have
a common (DFU-based)
communication layer.

On top of it we can transfer:

• Upgrade images

• In the QFU format

• Other FM requests

• Using the QFM protocol

Layer USB mode UART mode

DFU
payload

Quark Firmware Management (QFM) Protocol /
Quark Firmware Update (QFU) Format

DFU flavor USB/DFU
Quark DFU

Adaptation (QDA)
Protocol

Transport USB XMODEM-CRC

Driver USB device driver UART driver

17

18

Block-wise format:

• QFU images are divided in blocks of the same
size (with the exception of the last one)

• 1st block: header

• Following blocks: raw firmware image (binary)

• Each block must be transferred in a single
DFU DNLOAD request

• i.e., DFU tools must use the same block-size of
the image (specified in the header)

QFU Image Format: Overview

The DFU suffix is not
shown since it is not
processed by the device.

QFU Header

[optional authentication data]

Image Block 1

Image Block 2

…

Image Block N

19

First-level header

 Containing common information for
processing the image

Can be followed by an extended
header

 Containing information for image
verification / authentication

Block size is fixed to 2kB / 4kB
(multiple of page size) in the current
implementation

 For code / footprint optimization reasons

“QFUH”
(Magic; 4 bytes)

vid
(Vendor ID; hex16)

pid
(Product ID; hex16)

pid_dfu
(Product ID DFU; hex16)

part_num
(Partition number; uint16)

app_version
(Application version; hex32 – vendor specific)

blk_size = 2kB/4kB
(Block size; uint16)

blk_cnt
(Total block number,
incl. header; uint16)

ext_hdr
(Extended header type; 2

bytes)

rsvd
(reserved; 2 bytes)

<Extended header content or zeroed padding>

QFU Image Format: Header

20

Flash divided in partitions

• No explicit memory addresses

Current partition scheme

• Quark D2000

• 1 partition (for x86)

• Quark SE C1000

• 2 partitions (one for x86, one for ARC)

Other partition scheme are possible

• Including multiple partitions per core

“QFUH”
(Magic; 4 bytes)

vid
(Vendor ID; hex16)

pid
(Product ID; hex16)

pid_dfu
(Product ID DFU; hex16)

part_num
(Partition number; uint16)

app_version
(Application version; hex32 – vendor specific)

blk_size = 2kB/4kB
(Block size; uint16)

blk_cnt
(Total block number,
incl. header; uint16)

ext_hdr
(Extended header type; 2

bytes)

rsvd
(reserved; 2 bytes)

<Extended header content or zeroed padding>

QFU Image Format: Partitions

21

Flash layout: Application partitions

Quark D2000

ARC
Partition

(188kB)

Quark SE C1000

ROM
(Bootloader)

x86
Partition

(32kB)

BL-Data
(4kB)

OTP
(8kB)

Data
(4kB)

System Flash 0
(32kB)

ROM
(1st stage BL)

OTP
(8kB)

Sys Flash 0
(192kB)

BL-Data
(4kB)

Sys Flash 1
(192kB)

2nd-stage
BL

(20kB)

x86
Partition

(172kB)

22

Providing extended-FM over DFU:

• Application erase

• Delete all application code

• (from every partition)

• Information retrieval

• Provide info about device’s HW, SW, and
configuration

• E.g., available partitions, bootloader
version, application version, etc.

• Key provisioning

• (it will be available in QMSI 1.4)

Layer USB mode UART mode

DFU
payload

Quark Firmware Management (QFM) Protocol /
Quark Firmware Update (QFU) Format

DFU flavor USB/DFU
Quark DFU

Adaptation (QDA)
Protocol

Transport USB XMODEM-CRC

Driver USB device driver UART driver

QFM Protocol: Overview

QFM Protocol: Packets

Requests:

1. QFM_APP_ERASE

2. QFM_SYS_INFO_REQ

3. QFM_UPDATE_KEY

Responses:

1. QFM_SYS_INFO_RESP

Requests are sent using
DFU_DNLOAD transactions

Responses are sent using
DFU_UPLOAD transactions

23

24

QFM Protocol: Examples

Host Device

DFU_DNLOAD

DFU_STATUS

Data: [QFM_SYS_INFO_REQ]

Status: OK

DFU_UPLOAD request

DFU_UPLOAD response

Data: [QFM_SYS_INFO_RSP]

Host Device

DFU_DNLOAD

DFU_STATUS

Data: [QFM_UPDATE_KEY]

Status: OK/ERR

Request response
piggy-backed in
DFU Status

Key Update System Information Retrieval

25

Different DFU alternate settings used
to switch between QFM and QFU:

• Alt-Setting 0 is for extended-FM

• DFU used to exchange QFM packets

• Alt-Settings 1+ are for FW upgrades

• DFU used to transfer QFU images

• Each alt-setting identifies a specific
partition

Layer USB mode UART mode

DFU
payload

Quark Firmware Management (QFM) Protocol /
Quark Firmware Update (QFU) Format

DFU flavor USB/DFU
Quark DFU

Adaptation (QDA)
Protocol

Transport USB XMODEM-CRC

Driver USB device driver UART driver

FM Protocol Stack: QFM / QFU selection

$ dfu-util -l
Found DFU: [8086:c100] ver=0100, [...], alt=2, name="Partition2 (ARC)", serial="00.01"
Found DFU: [8086:c100] ver=0100, [...], alt=1, name="Partition1 (LMT)", serial="00.01"
Found DFU: [8086:c100] ver=0100, [...], alt=0, name="QFM", serial="00.01"

26

QFU image creator

• qm_make_dfu.py

• Converts a raw binary into a
QFU/DFU image

• Adds the QFU header

• Adds the DFU suffix

• The image must be flashed
separately

• Using a DFU tool

• (dfu-util / qm-dfu-util)

QFM utility

• qm_manage.py

• Enables QFM functionality

• Info retrieval

• Application erase

• Key provisioning

• DFU tools are called directly

• To send QFM requests and collect
QFM responses

QFU / QFM: Host Tools

Example: Create QFU image and perform upgrade

1. Build the binary

2. Create a QFU image

• Using the qm_make_dfu.py python script

$ qm_make_dfu.py release/quark_se/x86/bin/blinky.bin -p 1 --app-version 42

3. Enter FM mode

• Ground FM pin and reset the board

• (not needed if a USB/DFU application is running)

4. Flash via dfu-util

• Using either the original dfu-util (for USB) or qm-dfu-util (for UART)

$ dfu-util -D release/quark_se/x86/bin/blinky.bin.dfu -a 1

27

Example: Using QFM services

Info retrieval

$ qm_manage.py info –d <vid>:<pid>

Application erase

$ qm_manage.py erase –d <vid>:<pid>

Key provisioning

$ qm_manage.py [set-rv-key | set-fw-key] <key-file> –d <vid>:<pid>

28

Version : 1.4.0
SoC Type : Quark SE
Auth. : NONE
Target 00 : x86 (running application on partition 0)
Target 01 : sensor (running application on partition 1)
Part. 00 : App Version 42
Part. 01 : No application installed

29

30

What is provided
(in forthcoming 1.4 release)

• Authenticated firmware upgrades

• Symmetric-key scheme

• HMAC256 authentication

• Key management

• First-time provisioning and
subsequent updates

• Relaying on an additional key

What is not provided

• Encryption

• Of the image

• Of key update request

• Image verification at boot

• Not difficult to implement though

• Excluded to minimize boot time

Secure FW Upgrade Feature: Overview

31

The QFU header is extended with an
HMAC extended header

• Containing all the information
needed to authenticate the image

• A list of block hashes

• One for blocks

• An HMAC digest authenticating the
entire header

• Including all the hashes

• (also containing a Security Version
Number – SVN)

Secure FW Upgrade: QFU extension

“QFUH”

vid pid

pid_dfu part_num

app_version

blk_size = 2kB total_blk_cnt

ext_hdr = HMAC256 rsvd

svn
(security version number; 4 bytes)

blk_sha256[0]
…

blk_sha256[data_blk_cnt - 1]
(per-block SHA256 hashes; 32*data_blk_cnt bytes)

hmac256
(HMAC256 of the whole header; 32 bytes)

32

Secure FW Upgrade: Upgrade flow

QFU base
header verify

Success
Authenticate

header

Error
(no partition erase)

Failure Failure

Write block

Is last block?
Receive

new block
Success

Authenticate
block

Received all
blocks?

Success

No

Yes

Done

Yes

Failure

Verify
written block

Error
(partition erase)

No

First DFU_DNLOAD

block received

 blk_num == 0
 hdr_magic == QFUH
 part_num == alt_setting
 blk_size == [2048|4096]
 vid, pid, dfu_pid
 ext_hdr == HMAC256

 hmac == hmac(entire_header, fw_key)
 SVN >= current_SVN

Fail if blk_num is not sequential

hdr.sha256[blk_num-1] == sha256(block)

blk_num == hdr.totoal_blk_cnt

33

Secure FW Upgrade: Ensuring partition consistency

Problem:

• Unhandled failures (e.g., resets) can leave partitions in an inconsistent state

Solution:

• Associate a consistency flag to every partition

• Stored in persistent Bootloader Data (BL-Data)

• Change consistency flag during FW upgrades

• Before starting the upgrade, mark partition as inconsistent

• When upgrade is complete, mark partition as consistent

• Sanitize partitions at every boot

• Look for inconsistent partitions and delete them

Continue
FM mode

Mark partition as
not consistent

(Update BL-Data)

Receive and
write each block

Entire QFU image
successfully written?

No
(error or user aborted) Erase

partition

Mark partition as
consistent

(Update BL-Data)

Yes

First data block of a QFU image

has been received and validated

34

Secure FW Upgrade: Consistency flag and upgrade
flow

If a reboot happens here, the partition is sanitized
(erased and marked back as consistent) during
the boot process

35

Key Management: Provisioning/update mechanism

• Both first time provisioning and subsequent updates are supported

• The key is sent to the device with a special key-update request

• Extension of the QFM protocol

• The request and the new key are authenticated with two keys (double signing):

• the old firmware key and

• an additional key, the revocation key

• The key-update request is not encrypted

• Since at the moment only wired and point-to-point transport (i.e., UART and
USB) are supported

36

Key Management: Revocation and firmware keys

The firmware key is used for authenticating both key-update request and
upgrade images.

The revocation key is used only for authenticating key-update requests.

The revocation key can be updated too:

• The same key update request is used

• The request is authenticated with the current firmware key and the old
provisioning key

37

Key Management: First-time provisioning

In un-provisioned devices both keys have the same default (‘magic’) value.

First-time provisioning sequence:

1. Provide the revocation key

• Signing it with the magic key twice

2. Provide the firmware key

• Signing it with the magic key (in place of the old firmware key) and the
revocation key

Key provisioning enforcement:

• Firmware upgrades are enabled only if the firmware key is set

• The firmware key can be set only after the revocation key

38

Key Management: Key-update QFM packets

Revocation key update

qfm_pkt_type = QFM_UPDATE_RV_KEY
[QFM packet type, 4 bytes]

key
[256-bit new revocation key, 32 bytes]

hmac256
[HMAC256 signature of all the previous, done
with the FW key and the old revocation key]

Firmware key update

qfm_pkt_type = QFM_UPDATE_FW_KEY
[QFM packet type, 4 bytes]

key
[256-bit new firmware key, 32 bytes]

hmac256
[HMAC256 signature of all the previous, done
with the old FW key and the revocation key]

Same algorithm:
HMAC(HMAC(packet, current_fw_key), current_rv_key)

39

Persistent Bootloader Data (BL-Data)

In order to enable Firmware Management (FM), the bootloader needs to store
and maintain some (meta-)data

 Application version, partition consistency, etc.

 Authentication keys

BL-Data management must be resilient to update failures and possible
attacks.

Resilience is achieved with:

 BL-Data duplication (backup copy)

 Verification at each boot (sanitization)

40

BL-Data: Duplication

Two identical copies of BL-Data are maintained:

 BL-Data Main

 BL-Data Backup

Each copy has a CRC to verify its integrity

Copies are stored in different flash pages

 Since a flash update requires the entire page to be deleted and then rewritten

When BL-Data is changed, copies are updated always in the same order

 First BL-Data Main, then BL-Data Backup

BL-Data Main

BL-Data Backup

Page N

Page N+1

41

42

BL-Data: Flash location

Quark D2000 Quark SE C1000

BL-Data
(4kb)

OTP
(8kB)

Data
(4kB)

System Flash 0
(32kB)

OTP
(8kB)

BL-Data
(4kb)

Sys Flash 0
(192kB)

Sys Flash 1
(192kB)

43

BL-Data: Verification flow

At every boot, BL-Data is verified to detect special conditions requiring fixing:

• Lack of initialization.

• BL-Data Flash Section is blank and BL-Data (both copies) need to be initialized

• Single BL-Data Copy corrupted or missing

• An unhandled failure (e.g., a power loss) has happened during an update

• The other BL-Data copy contains the latest valid information and must be copied
over the corrupted one

• Both BL-Data copies corrupted

• Some critical error has happened (hardware fault or security attack)

• This is an unrecoverable situation: enter infinite loop (customer return needed)

BL-Data Main:
CRC valid?

BL-Data Backup:
CRC valid?

No

No

Init BL-Data Section
Copy BL-Data Backup
 BL-Data Main

Copy BL-Data Main
 BL-Data Backup

Yes

Sanitize Partitions

BL-Data Main
==

BL-Data Backup

No
Yes

Yes

Continue Boot

BL-Data empty
(== 0xFF)?

Infinite Loop

No

Yes
Look for inconsistent
partitions, erase
them, and mark
them back as
consistent

44

BL-Data: Verification flow

BL-Data cannot
be reinitialized
because
authentication
keys would be
set back to their
default values.

BL-Data: Content
Bootloader data

trim_codes Shadowed trim codes

partitions[N_PARTS] Partition descriptors

targets[N_TARGETS] Target descriptors

fw_key Firmware key

rv_key Revocation key

crc CRC of all of the above

Partition descriptor

target_idx The index of target (core)
associated with the partition

is_consistent Consistency flag

app_version The version of the application
installed in the partition

<other> Misc information about the
structure of the partition
(starting address, size, etc.)

45

active_part_idx The index of the active
partition for this target

svn The SVN associated with this
target

Target descriptor

46

BL-Data: Partitions and targets

A partition is a portion of flash designed to host an application. A partition is
associated with a target, i.e., the core that will run the hosted application.

• We currently support only one partition per target

• On Quark D2000 we have only one target / partition (x86 partition)

• On Quark SE C1000 we have two targets / partitions (x86 and ARC partitions)

• But the design allows for multiple partitions per target

• Possible use case: fallback partition in case of failed OTA updates

• External targets / partitions are also envisioned

• Associated with board peripherals such as a BLE module

47

Flash layout

Quark D2000

ARC
Partition
(188kB)

Quark SE C1000

ROM
(Bootloader)

x86
Partition

(32kB)

BL-Data
(4kB)

OTP
(8kB)

Data
(4kB)

System Flash 0
(32kB)

ROM
(1st stage BL)

OTP
(8kB)

Sys Flash 0
(192kB)

BL-Data
(4kB)

Sys Flash 1
(192kB)

2nd-stage
BL

(20kB)

x86
Partition
(172kB)

48

49

• DFU state machine

• Completely independent from the
lower-level communication stack

• QDA (DFU over UART)

• Not just qm-dfu-util, but the device-
side code as well

• XMODEM

• You just have to define your own
getc/putc functions

• QFM/QFU host tools

• (device-side components are more
dependent on QMSI API)

fw-manager/
├── dfu
│ ├── core
│ │ ├── dfu_core.c
│ │ └── dfu_core.h
│ ├── dfu.h
│ ├── qda
│ │ ├── qda.c
│ │ ├── qda.h
│ │ ├── qda_packets.h
│ │ ├── xmodem.c
│ │ ├── xmodem.h
│ │ ├── xmodem_io.h
│ │ ├── xmodem_io_uart.c
│ │ └── xmodem_io_uart.h
│ └── usb-dfu

[...]

https://github.com/quark-mcu/qm-bootloader

Reusable software components

https://github.com/quark-mcu/qm-bootloader

50

• Modular approach pays back in
embedded as well

• Easier to adapt to changing
requirements

• Some code reused also for host-tools
(XMODEM/QDA)

• Code better validated (e.g., DFU state
machine used twice)

• Reuse existing open-source code

• dfu-util, TinyCrypt, etc.

• LTO offsets most of the overhead
of the modular approach

• 15%-20% flash saving

• But it complicates debugging

• When dealing with flash layouts use
linker script symbols

• Especially if they are logical layouts

• App partitions, bl-data section, 2nd-
stage

• And don’t be afraid of using the
INCLUDE directive

Some lessons learnt

Any questions?

51

Thank you!

Intel, the Intel logo, Quark, the Intel. Experience What’s Inside logo and Intel. Experience What’s Inside are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
© Intel Corporation

