GENERIC PHY FRAMEWORK:
AN OVERVIEW

Kishon Vijay Abraham |

About Me

* Working in Texas Instruments since 2007

* Contributing to linux kernel for the past four years

* Develop and Maintain PHY Subsystem (drivers/phy)
* Develop and Maintain PCle glue for DRA7xx
 USB DWC3 driver support in u-boot

* Presented a paper on “USB Debugging and Profiling Techniques” in
ELCE 2012

2

i3 TEXAS
INSTRUMENTS

Agenda

* Introduction

* Functionalities

* PHY Standards

* PHY Integration

* PIPE3 PHY

* Generic PHY Framework

* Sample PHY/Controller Driver
* DT Representation

* Non-dt Support

 Future Enhancements

3

i3 TEXAS
INSTRUMENTS

Introduction

* PHY is an abbreviation for the physical layer
* Responsible for transmitting data over a physical medium
* PHY connects the device controller with the physical medium
— USB
— SATA
- PCIE
— ETHERNET

4

i3 TEXAS
INSTRUMENTS

Functionalities

Serialization/De-serialization
Encoding/Decoding
Synchronization

Error Correction

Collision Detection

Data transmission rate

5

i3 TEXAS
INSTRUMENTS

PHY Standards

ULPI

UTMI+

PIPE3

D-PHY

M-PHY

IEEE 802.3

6

i3 TEXAS
INSTRUMENTS

PHY INTEGRATION

* PHY integrated within the controller
— Shares the same address space with the controller
— No separate PHY driver is required

* PHY integrated within the SoC

— Connected to the controller using UTMI, PIPES interface
specification

— Should have a separate PHY driver
* PHY external to the SoC
— Connected to the controller using ULPI etc..

— Should have a separate PHY driver

7

i3 TEXAS
INSTRUMENTS

PIPE3 PHY

PMA

Transmitter

Serializer

5=

PLL

PIPE3 PHY
-
POWER CTRL I/F
0 REF CLK »
Device Controller
MAC PCS Data [9:0]
Data [31:0] -
8B/10B
> Encoder -
PIPE3 MCLK| ||
Tx Port PIPE TO PMA
ctrl/status Tx Adapter ctrl/status
- - Logic <
Data [31:0] —_ Data [9:0]
B B <
<4 Decoder
PIPE3 PCLK
Rx Port PIPE dTO PMA ctrl/status P
ctrl/status Rx Adapter
- - Logic _»

Receiver

De-Serializer

o

PHY clock

i3 TEXAS
INSTRUMENTS

PIPE3 PHY PROGRAMMING

POWER CONTROL PIPE3 PHY
-
POWER CTRL I/F PMA
CLOCK PROGRAMMING
| Transmitter
0 REF CLK
Device Controller
MA PCS Data [9:0]
Data [31:0] Serializer
8B/10B
> Encoder -
PIPES Tx PROGRAMMING
Tx Port PIPE TO PMA
ctrl/status Tx Adapter ctrl/status
- Logic <
Data [31:0] Data [9:0]
8B/10B <
< Decoder Receiver
RPI§E3t < PCLK
* For PIPE TO PMA ctrl/status P
@ Ctrl/status g, Rx Adapter
i o
Logic > De-Serializer
PCS
PROGRAMMING
* Rx PROGRAMMING
PLL

A

PLL PROGRAMMING

PHY clock

i3 TEXAS
INSTRUMENTS

Generic PHY Framework

CONTROLLER
DRIVERS
(drivers/usb/
musb/

dwc3/)

Controller Driver interface

PHY CORE
(drivers/phy/
phy-core.c)

PHY Driver interface

PHY DRIVERS
(drivers/phy/)

10

i3 TEXAS
INSTRUMENTS

Generic PHY Framework

Derived from USB PHY Framework
Binds controller driver with PHY driver
PHYs integrated outside the controller
Supports dt and non-dt boot
Op's the controller driver can use to control the PHY
— phy_init
— phy_power_on
— phy_power_off
— phy_exit

phy _pm_runtime_*

11

i3 TEXAS
INSTRUMENTS

Phy-core Framework

PHY PROVIDER (dt boot)

struct phy* (*of xlate)(struct device*,
struct of phandle args*)

of phy simple xlate => default
implementation

PHY_ OPS

PHY
ol= O
o OP
O Cld C
o c
1..* 1..*
n

(*init) (struct phy*)
(*power on) (struct phy ¥*)
(*power off) (struct phy *)
(*exit) (struct phy*)

PHY CONSUMER (binding)

const char* dev_name
const char* port name

12

13 TEXAS
INSTRUMENTS

Sequence Diagram

1
phy create()
<’ . .
phy provider register()

3 4
phy_get() =~ EEEEEEEES - “>of xlate()

> - 6
phy init() ->init()

7

phy power on()>

9

phy pm runtime* ()

10

->power_on()

11

phy power off (T

12>

->power off()
13

phy exit()

14

->exit()

phy destroy()

13

13 TEXAS
INSTRUMENTS

Sample PHY driver

drivers/phy/phy-sample.c

static int sample phy init(struct phy *phy) {
/* Initialize Sample PHY */

static int sample phy power on(struct phy *phy) {
/* Enable clocks and
power on Sample PHY */
}

static int sample phy power off(struct phy *phy) {
/* Disable clocks and
power off Sample PHY */
}

static int sample phy exit(struct phy *phy) {
/* Sample PHY cleanup */

15

i3 TEXAS
INSTRUMENTS

Sample PHY driver

struct phy ops sample phy ops ({
.init = sample phy init,
.power on = sample phy power on,
.power off = sample phy power off,
.exit = sample phy exit,

}i

/* Sample PHY specific implementation of of xlate.
* sets the PHY to the mode obtained from of phandle args.
* If the PHY provider implements multiple PHYs, then this of xlate should
* find the correct PHY from the np present in of phandle args and return it
*/
static struct phy *sample phy xlate(struct device *dev,
struct of phandle args *args) ({
sample->mode = args->args[0];
return sample->phy;

16

i3 TEXAS
INSTRUMENTS

Sample PHY driver

static int sample phy probe(struct platform device *pdev) {

phy = devm phy create(dev, dev->of node, &sample phy ops, pdata->init data);

if (dev->of node) {
/* use default implementation of of xlate if the device tree node
* represents a single PHY and if the PHY driver does not want to
* receive any arguments that's added along with the phandle

*/
// phy provider = devm of phy provider register(phy->dev,
// of phy simple xlate);

phy provider = devm of phy provider register (phy->dev,
sample phy xlate);

17

i3 TEXAS
INSTRUMENTS

Sample Controller driver

drivers/<controller>/controller-sample.c

static int sample controller probe(struct platform device *pdev) ({
phy = devm phy get(dev, “sample-phy”);

}

int sample controller init() {
/* controller initialization goes here */
phy_init(phy);

}

int sample controller start transfer() ({
phy power on(phy);
/* program the controller to start transfer */

}

int sample controller complete transfer() ({
/* free buffer etc */
phy power off(phy);

}) 18

i3 TEXAS
INSTRUMENTS

DT REPRESENTATION

* Single PHY
e Multi PHY
— Multiple instances of the same PHY

— Single PHY IP encompasses multiple PHYs

19

i3 TEXAS
INSTRUMENTS

Single PHY

OCP bus

H OCP2SCP

UTMI

N MUSB controller integrated in OMAP4

20

13 TEXAS
INSTRUMENTS

Single PHY (dt representation)

ocp2scp@xxxxx {
compatible = “ti,omap-ocp2scp”;

usb2phy@0 {
compatible = “ti,omap-usb2”;

#phy-cells = <0>;

}

usb otg hs@xxxxx {
compatible = “ti,omap4-musb”;
phys = <&usb2phy>;
phy-names = “usb2-phy”;

21

i3 TEXAS
INSTRUMENTS

Multi PHY (Multiple instances of same IP)

. | OCP bus

+—>

OCP2SCP1

OCP2SCP3

DWC3, PCIe and SATA controller integrated in DRA7xxX

22

13 TEXAS
INSTRUMENTS

Multi PHY (dt representation)

ocp2scp3@xxxxx {

compatible = “ti,omap-ocp2scp”;

pciephy: pipe3phy@0 {
compatible = “ti,phy-pipe3”;
#phy-cells = <1>;

}

sataphy: pipe3phy@l {
compatible = “ti,phy-pipe3”;

#phy-cells = <1>;

pcie@0 {

compatible = “ti,dra7-pcie”;
phys = <&pciephy PCIEPHY>;
phy-names = “pcie-phy”;

sata@0 {

compatible = “snps,dwc-ahci”;

phys = <&sataphy SATAPHY>;

}
} phy-names = “sata-phy”;
ocp2scpl@xxxxx {
compatible = “ti,omap-ocp2scp”;
usb3phy: pipe3phyQ0 {
compatible = “ti,phy-pipe3”; usb _otg ss@xxxxx {
.o compatible = “snps,dwc3”;
#phy-cells = <1>; .
} phys = <&usb2phy>, <&usb3phy USBPHY>;
usb2phy@0 { phy-names = “usb2-phy”, “usb3-phy”;
compatible = *“usb2-phy*;
#phy-cells = <0>;
}
} 23

i3 TEXAS
INSTRUMENTS

Multi PHY (Single IP encompass multiple

phys)

. |OCP bus

MiPHY365 for SoC STiH416

13 TEXAS
INSTRUMENTS

Multi PHY (dt representation)

satal0: sata@fe380000 {

.o phys = <&phy port0 MIPHY TYPE SATA>;
phy port0: port@fe382000 { phy-names = “sata-phy”;

}i

#phy-cells = <1>;

miphy: miphy365x@£fe382000 {
compatible = "st,miphy365x-phy";

}

phy portl: port@fe38a000 {

#phy-cells = <1>;

OLD METHOD
sata0: sata@fe380000 {

miphy: miphy365x@£fe382000 {

compatible = "st,miphy365x-phy"; phys = <&miphy O MIPHY TYPE SATA>;
#éﬂy—cells = <2>; phy-names = “sata-phy”;
}i s
25
i3 TExas

INSTRUMENTS

Non-dt Support

* PHYs should be aware of their consumers
* Consumer data is added as platform data to the platform device

* PHY driver should pass it to phy-core during phy_create()

struct phy consumer consumers[] = {
PHY CONSUMER("musb-hdrc.0", "usb"),

}i

struct phy init data init_data = {
.consumers = consumers,
.num_consumers = ARRAY SIZE(consumers),

}i

26

i3 TEXAS
INSTRUMENTS

Future Enhancements

* Adapt existing PHY drivers to Generic PHY Framework
* Support for ULPI PHY driver

e Support for Ethernet PHYs

27

i3 TEXAS
INSTRUMENTS

PHY
Kona PHY
Berlin PHY
Exynos PHY
HIX5HD2 SATA PHY
MIPHY365

MVEBU PHY

OMAP USB2 PHY
APQ8064 PHY

IPQ806X PHY

S5PV210 PHY
SPEAR1310/1340 MIPHY
SUN4I USB PHY

TI PIPE3

X-GENE PHY

Upstreamed PHY drivers (3.17)

Domain
USB2
SATA
USB2, SATA, DISPLAY,
SATA
SATA, PCIE

SATA

USB2

SATA

SATA

USB2

SATA, PCIE

USB

SATA, PCIE, USB3

SATA

Vendor

Broadcom

Marvell

Samsung

Hisilicon
STMicroelectronics
Marvell

Texas Instruments
Qualcom

Qualcom

Samsung
STMicroelectronics
Allwinner

Texas Instruments

Applied Micro

28

i3 TEXAS
INSTRUMENTS

Acknowledgements

* Felipe Balbi
* Greg KH

* Everyone who has contributed to PHY (Authors, Reviewers, Testers
etc..)

29

i3 TEXAS
INSTRUMENTS

References

wikipedia.org/wiki/Physical layer
mipi.org/specifications/physical-layer
PIPE specification

drivers/phy/

Documentation/phy.txt

30

i3 TEXAS
INSTRUMENTS

THANK YOU

For ri nd F k

kishon@ti.com, kishonvijayabraham@gmail.com

31

i3 TEXAS
INSTRUMENTS

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

