
Multi-Client
Syncing
Strategies
Todd	Kennedy

https://tck.io/

> whoami

Todd Kennedy

CTO, Scripto

Beard grower

@whale_eat_squid

https://twitter.com/whale_eat_squid

We	have	a	problem
We	want	to	be	able	to	let	multiple	people	edit	the	same

document	...but	merge	conflicts	are	bad

Luckily	there	are	solutions
Operational	Transform	(Google	Docs,	Wave,	Etherpad)

Differential	Synchronization	(O.G.	Google	Docs,	Gedit)

Conflict-Free	Replicated	Data	Types	(RIAK,	Soundcloud)

Differential	Synchronization
Neil	Fraiser	at	Google	in	2009	(white	paper)

Original	concept	for	google	docs

Uses	a	character	based	diff	to	traffic	changes

A	basic	example
In	a	basic,	non-networked	setup,	there	are	two	copies	of	the

text	that	may	be	edited	at	anytime:	the	copy	you're	actively

working	on	and	the	copy	stored	in	your	datastore.

1.	 Each	operation	in	the	active	copy	is	diffed	against	a	shadow

copy,	creating	a	diff

2.	 This	diff	is	handled	to	the	datastore

3.	 The	current	version	of	the	active	copy	becomes	the	shadow

copy

4.	 The	diff	is	applied	as	a	patch	against	the	datastore

Simple,	huh?
Keeping	muliple	remote	clients	in	sync	requires	5	copies	PER

user

Whats	good?
Much	simpler	than	OT	&	CRDT	(for	various	definitions	of

"simplier")

Allows	for	out	of	order	application	of	changes

Can	work	without	central	server

Whats	bad?
Scaling	is	complex	&	memory	intensive

Diff-Match-Patch	is	hard	for	structured	data

Can't	track	user	performing	edit	in-band

Conflict-Free	Replicated	Data
Types
Two	types	of	CRDTs

Commutative	Replicated	Data
Types
Operation-based

Commutative	but	not	idempotent

Ops	can	arrive	in	any	order,	but	must	only	arrive	once

Convergent	Replicated	Data
Types
State-based

Requires	sending	a	lot	data	over	wire	(all	state)

Requires	merge	to	be	commutative,	associative	and

idempotent

WOOT	(WithOut	Operational
Transform
A	CRDT-based	method	for	document	editing

Whats	Good
Does	not	require	a	central	server

Less	complex	than	OT	(debateable!)

Whats	Bad
Can't	delete	data.	Seriously,	only	hide	it

Operational	Transform
Developed	at	MCTC	in	Austin,	TX	1989	&	Xerox	Parc	in	1995

&	Google	in	mid	2000s

Serialization	and	broadcast	of

specific	operations	performed	on

a	shared	document	of	equal

length,	with	respect	to	the

document	cursor

Basic	operations
insertCharacters

deleteCharacters

retain

Example
Lets	change	"I	like	seattle"	to	"I	like	Seattle"

retain(7)

deleteCharacters('s')

insertCharacters('S')

retain(6)

So....	operations
How	do	we	use	them	though?

ENTER	TRANSFORM
The	transform	method	is	the	heart	of	OT	—	it	can	apply

operations	on	top	of	a	document	without	requiring	locking

and	resolving	conflicts	in	a	'sane'	fashion

Transform	applies	changesets	to
documents	of	the	same	length
All	the	characters	in	the	retain,	insert	&	delete	operations

must	add	up	to	the	length	of	the	current	document	the

transform	is	being	applied	to

A	better	example
Two	users	editing	a	document	that	is	the	characters	 Ta

User	1	inserts	 o

User	2	inserts	 p

Or,	in	transforms:

retain(2), insertCharacters('o')

retain(2), insertCharacters('p')

The	document	has	changed	in	the	client	and	the	server,	but	to

two	different	states.

State	A	adds	 o 	to	the	document.	State	B	adds	 p

Now	we	need	to	reconcile	the	two	states	so	that	the	unified

document	is	in	agreement	again

Putting	both	changesets	into	the	transform 	method

returns	two	new	changesets	that	can	be	applied	to	the

current	document	state	respectively

...but	only	because	they're	based	on	the	same	HEAD

revision

const [a2, b2] = transform(a, b)

transform 	returns	an	a2 	that	looks	like:

retain(3), insertCharacters('o')

Now	we	can	apply	to	document	state	A	and	b2 	to	B	and

achieve	singularity!

By	doing	that	to	the	document	(which	is	now	Tap)	and	we

end	up	with	 Tapo !

Huh?	Tapo	isn't	a	word
No,	but	it's	a	conflict-free	resolution	to	the	issue	—	better

than	git	telling	you	that	your	head	is	detacted	and	you	need	a

three-way	merge!

In	a	more	complex	scenario	you'll	be	dealing	with	a	lot	more

changesets	with	the	same	parent	revision	that	will	conflict.

Most	OT	systems	resolve	this	with	a	first-to-the-server

strategy...

...since	the	server	mediates	the	changesets	between	the

clients

When	the	server	accepts	a	commit	message	it

assigns	it	a	unique	identifier	(usually	either	a	monotonically

increasing	integer	or	a	SHA1	hash	of	the	current	document

state).

sends	a	accept 	message	to	the	originating	client

broadcasts	the	change	as	to	the	rest	of	the	connected

clients

In	reality...
This	is	a	way	more	likely	scenario	to	encounter:	the	server

and	client	are	diverged	by	more	than	one	state

Thankfully	the	transform 	method	allows	us	to	resolve	for

this	state	as	well.

In	the	simple	example	we	discarded	state	b2 	since	the	client

was	disinterested	in	it	and	only	sent	a2 	to	the	server.	Here,

we	need	to	use	that	to	generate	a	new	"bridge"	transform.

By	transforming	b 	and	a2 	we	can	derive	b2

And	keeping	with	that,	we	can	also	transform	b2 	and	a2

against	c 	to	get	c2 	which	we	can	apply	to	this	document.	This

"stepping"	application	can	be	applied	on	any	number	of

changesets	to	derive	any	intermediate	state	so	long	as	one

shared	revision	exists.

That	seems	kind	of	laborious
It	is!	Not	only	that	but	it's	Big	O	is	O(n log n)!

This	complexity	makes	it	difficult	to	support	large	numbers	of

clients	performing	operations	on	the	same	document.

Lets	just	compose	ourselves
Wave's	improvement	on	this	process	is	the	compose

function	which	is	O(n) .

Composes	takes	changesets	performed	on	the	same

document	and	combines	them	into	one	changeset.

So	instead	of	transforming	c 	against	b2 	and	a2 	we	can

compose	the	latter	into	ab2 	and	just	transform(ab2,

c)

Thank	you!

Resources
Concurrency	Control	in	Groupware	Systems

High-Latency,	Low-Bandwidth	Windowing	in	the	Jupiter

Collaboration	System

Understanding	and	Applying	Operational	Transform

Google	Wave	Operational	Transform

Neil	Fraser's	Google	Tech	Talk	on	Differential	Sync

WithOut	Operational	Transform

WOOT	for	JavaScript	and	Scala

Operational	Transform	JS	Library

Differential	Synchronization

