

MQTT – IoT Messaging Protocol

Francisco Quintero

Lead Firmware Engineer

- Internet of Things: The next frontier

- Evolution of the “net”: Military and academic use
(Mainframes, Minicomputers) → General,
personal use (Mobile, cloud) → The internet of all
things, the network is a commodity (Wearable,
embedded)

Problem definition

- Distributed network of devices communicating
with a central location or to each other.
- Devices that run on batteries or with limited
power.
- Information flows over unreliable networks
(cellular, satellite, any wireless technology in
general).
- No need to write an application protocol from
scratch on top of TCP/IP.

Agenda

● Introducing MQTT
● Publish / Subscribe
● Client, Broker and Connection Establishment
● MQTT Publish, Subscribe and Unsubscribe
● MQTT Topics
● MQTT Quality of Service Levels
● Persistent Session and Queuing Messages
● Retained Messages
● Last Will and Testament
● Keep Alive and Client Take-Over
● Demo

What is MQTT ?

MQTT is a lightweight publish/subscribe protocol
with reliable bi-directional message delivery.

Invented in 1999 by Andy Stanford-Clark (IBM)
and Arlen Nipper. The original problem was to
send sensor data from oil pipelines through a
satellite link.

Key aspects

- Designed to handle high volumes of data in low
bandwidth networks.
- Small code footprint.
- Runs on top of TCP/IP. Both client and broker
need a TCP/IP stack. Some variations like MQTT-
SN run over non-TCP/IP networks.
- Avoids polling.
- Event oriented.
- Recovery, store and forward, and
publish/subscribeare part of the implementation
(no need to implement in the application logic).

Publish / Subscribe

Publish / Subscribe

- It decouples the publisher from the subscriber.
- Clients are always connected with a broker.
- Both publishers and subscribers are “clients”.
- A client sends a message (publisher).
- One or more clients receive the message
(subscribers).
- MQTT uses “topics” to determine which
message is routed to which client.
- A topic is a “hierarchical structured string”.

Client

- Can be a microcontroller up to a server.
- Implementation is straight-forward.
- Some numbers: C=30kb,Java=100kb.
- MQTT client libraries are available for a huge
variety of programming languages, for example
Android, Arduino, C, C++, C#, Go, iOS, Java,
JavaScript, .NET, etc.

Broker

- Core of any publish/subscribe protocol.
- Receives all messages from clients, filters them,
and then sends messages to all clients interested
in a particular topic.
- Handles authentication/authorization of clients.
- Highly scalable, easy to integrate into backend
systems, failure-resistant.

Connection, always initiaited by a
client.

Connect packet

● ClientId: Unique ID per broker.
● Clean Session: Flag to indicate if the session must be persistent or not. A

persistent session (CleanSession = false) means, that the broker will store
all subscriptions for the client and all missed messages (with Quality of
Service (QoS) 1 or 2). If the flag is set to true, the broker won’t store
anything for the client and will purge all information from a previous
persistent session.

● Username/Password: Sent in plaintext. Application must encrypt it.
● Will Message: Its purpose is to notify other clients when a client

disconnects ungracefully. The broker sends this message on behalf of the
client.

● KeepAlive: Period in secs the client is committed to send a PING to the
broker, so each other know if the other end is alive and reachable.

Publish, subscribe and unsubscribe

Publish packet

● Topic Name: A string, hierarchically structured with forward slashes as
delimiters, i.e “building/room_number/humidity”

● QoS: Quality of Service Level. Possible values are (0,1,2).
● Retain-Flag: Specifies if the broker saves the latest message for the specified

topic as last known good value. New clients that subscribe to that topic will
receive the last retained message on that topic instantly after subscribing.

● Payload: In binary form.
● Packet Identifier: Unique identifier between client and broker to identify a

message in a message, but only relevant for QoS 1 and 2. The client or the
broker must set by the client or the broker.

● DUP flag: Indicates that this message is a duplicate and is resent because no
ACK was received. Only relevant for QoS greater than 0. Retries must be
handled as an implementation detail by the client or the broker.

Subscribe packet

● Packet Identifier: Only needed for QoS > 0.
● List of Subscriptions: A SUBSCRIBE message

can contain an arbitrary number of
subscriptions for a client An arbitrary number of
subscriptions are valid for a SUBSCRIBE
message. Each subscription consists of a topic
and QoS level.

Unsubscribe packet

● Packet Identifier: The ACK for an
UNSUBSCRIBE packet will have the same
packet id.

● List of Topics: The list of topics to unsubscribe
from. No QoS is specified, just the topic.

Topics

● Case sensitive
● UTF-8
● Wildcards

– Single level: building/+/humidity
● building/room_4/humidity
● building/room_67/humidity
● building/room_78/humidity

– Multiple level (only at the end): building/room_number/#
● building/room_4/wall/temperature
● building/room_4/wall/humidity
● building/room_4/ceiling/temperature
● building/room_4/ceiling/humidity

Quality of Service (QoS)

● Establishes the guarantees of delivering a message:
– 0) At most once: No acks from the receiver, or stored and

redelivered by the sender.

– 1) At least once: As its name implies, msg delivered once,
but can also be delivered more than once.

– 2) Exactly once: Highest level QoS, but the slowest.

● QoS is set by the client. The broker will honor the
QoS set by clients on each end. Therefore, QoS can
get downgraded.

Persistent Session and Queue
Management

● The session is identified by the clientId.
● The following is stored in the session:

– Existence of a session, even when there are no subscriptions.

– All subscriptions.

– All messages with a Quality of Service (QoS) 1 or 2, which
are not confirmed by the client.

– All new QoS 1 or 2 messages, which the client missed while
offline.

– All received QoS 2 messages, which are not yet confirmed to
the client.

Retained Messages

● A retained message on a topic is the last known
good value, that is, the last message with the
“retained flag” set to true.

● To delete a retained message, a zero payload
message on a topic can be sent with the flag
set to false. Since the broker deletes the
retained message, new subscribers will not get
notified on this topic upon subscription.

Last Will and Testament

● Only sent to subscribers when a client disconnects
ungracefully (network error, no PINGS within
specified “Keep Alive” period).

● A last will consists of a topic, retained flag, QoS
and payload.

● The LWT can be specified on the CONNECT
message.

● It will not be sent if the client sends the
DISCONNECT message (graceful disconnect).

Keep Alive and Client Take-Over

● Needed because TCP/IP stacks “not always” notify
when a socket breaks. Many times the connection
seems open, but all writes are not reaching the other
end.

● Max keep alive is 18h 12min 15 sec.
● Take-over is when a broker has a half-open

connection (connection seems open) but the client
reconnects. Then the broker will close the previous
connection (based on the client id) and reopen a new
one.

MQTT vs HTTP
- Push delivery of data / events:

- MQTT low latency push from client to server
and from server to client.

- HTTP: Push from client to server but poll from
server to client.
- Efficient use of network:

- MQTT requires around 5 times less bytes
than HTTP.
- Reliable delivery: keeps QoS even across
connection breaks.

MQTT is being used in:

- POS.
- Slot machines.
- Automotive / Telematics.
- Medical.
- Home Automation.
- Railway.
- Asset tracking / management.
- Fire & Gas testing.

Well known companies using it

● Facebook for their messenger protocol:
– When we joined Facebook and started to build Messenger, our first technical challenge was learning

the entire infrastructure stack for Facebook Messages. It was great to be building on a scalable
platform that had already launched to hundreds of millions of users, but the system contained certain
assumptions and design decisions that didn’t always quite mesh with the product we wanted to build.
Luckily, our new colleagues were also excited about the vision for Messenger and joined the effort to
make sure the system could do what we needed.

One of the problems we experienced was long latency when sending a message. The method we were
using to send was reliable but slow, and there were limitations on how much we could improve it. With
just a few weeks until launch, we ended up building a new mechanism that maintains a persistent
connection to our servers. To do this without killing battery life, we used a protocol called MQTT that we
had experimented with in Beluga. MQTT is specifically designed for applications like sending telemetry
data to and from space probes, so it is designed to use bandwidth and batteries sparingly. By
maintaining an MQTT connection and routing messages through our chat pipeline, we were able to
often achieve phone-to-phone delivery in the hundreds of milliseconds, rather than multiple seconds.

– Source: https://www.facebook.com/notes/facebook-engineering/building-facebook-
messenger/10150259350998920/

Well-known companies using it

● Amazon for their AWS IoT
● AWS IoT is a managed cloud platform that lets

connected devices easily and securely interact
with cloud applications and other devices.

● Currently supports HTTP, MQTT, and
WebSockets.

Eclipse Paho Project
https://www.eclipse.org/paho/clients/c/embedded/

● In particular, for environments with limited resources, the
Embedded MQTT C/C++ Client Libraries are available,
contributed by Ian Craggs.

● Use very limited resources - pick and choose the
components needed.

● Do not rely on any particular libraries for networking,
threading or memory management.

● ANSI standard C for maximum portability, at the lowest
level.

● If needed, higher layer(s) in C and/or C++ are available.

Current libraries

● MQTTPacket

This is the lowest level library, the simplest and smallest, but hardest to use. It
deals with serialization and deserialization of MQTT packets. Serialization means
taking application data and converting it to a form ready for sending across the
network. Deserialization means taking the data read from the network and
extracting the data.

● MQTTClient

This is a C++ library first written for mbed, but now ported to other platforms.
Although it uses C++, it still avoids dynamic memory allocations, and has
replaceable classes for OS and network dependent functions. Use of the STL is
also avoided. It is based on, and requires, MQTTPacket.

● MQTTClient-C

A C version of MQTTClient, for environments where C++ is not the norm, such as
FreeRTOS. Also built on top of MQTTPacket.

MQTTPacket
MQTTPacket_connectData data = MQTTPacket_connectData_initializer;

int rc = 0;

char buf[200];

MQTTString topicString = MQTTString_initializer;

char* payload = "mypayload";

int payloadlen = strlen(payload);int buflen = sizeof(buf);

data.clientID.cstring = "me";

data.keepAliveInterval = 20;

data.cleansession = 1;

len = MQTTSerialize_connect(buf, buflen, &data); /* 1 */

topicString.cstring = "mytopic";

len += MQTTSerialize_publish(buf + len, buflen - len, 0, 0, 0, 0, topicString, payload, payloadlen); /* 2 */

len += MQTTSerialize_disconnect(buf + len, buflen - len); /* 3 */

/* From here, it is up to you to send/receive the produced payload over the network */

rc = Socket_new("127.0.0.1", 1883, &mysock);

rc = write(mysock, buf, len);

rc = close(mysock);

Quick cl demo

● On Ubuntu, install mosquitto, mosquitto_sub and
mosquitto_pub

● Broker is running as a daemon
● Subscribe to topic "ELC":

mosquitto_sub -t ELC -d

● - Post a file to the topic ELC, so subscribers get a
notification:

mosquitto_pub -t ELC -f publish.txt -d

Standard ports

● TCP/IP port 1883 is reserved with IANA
(Internet Assigned Numbers Authority) for use
with MQTT. TCP/IP port 8883 is also registered,
for using MQTT over SSL.

Useful links

MQTT information
- http://mqtt.org
MQTT 3.1 Specification
- http://www.ibm.com/developerworks/webservices/library/ws-mqtt/index.htm
MQTT 3.1.1 Specification
- http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/csprd02/mqtt-v3.1.1-csprd02.pdf
Eclipse M2M Industry Working Group
- http://wiki.eclipse.org/Machine-to-Machine
OASIS MQTT Technical Committee
- https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
HiveMQ
- http://www.hivemq.com
Eclipse Paho Project
- http://www.eclipse.org/paho/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

