

Eduardo Silva
@edsiper

eduardo@treasure-data.com

Eduardo Silva

● Github & Twitter @edsiper
● Personal Blog http://edsiper.linuxchile.cl

Treasure Data

● Open Source Engineer
● Fluentd / Fluent Bit http://github.com/fluent

Projects
● Monkey HTTP Server http://monkey-project.com
● Duda I/O http://duda.io

About Me

http://monkey-project.com/?ref=ELCE2015
http://www.treasuredata.com/

HTTP Everywhere
Use cases

● Home Automation
● Big Data
● Data Collection

 basically everywhere...

● Internet of Things
● Wearables
● Automotive

http://monkey-project.com/?ref=ELCE2015

Monkey HTTP Server

http://monkey-project.com/?ref=ELCE2015

Monkey HTTP Server
Highlights

● Event driven
● Multi-thread
● Zero copy strategy
● Memory optimization
● Secure
● Optimized for Linux, but compatible with others.
● Embedded Linux / Yocto
● Open Source: Apache License v2.0

http://monkey-project.com/?ref=ELCE2015

Monkey HTTP Server
Modular Design

● mk_core: agnostic runtime for handling of strings,
memory, event loop, configuration reader, vectors
and utilities within others.

● mk_server: TCP server, data streams, protocols,
plugins manager, scheduler and general runtime setup.

● plugins: networking layer for I/O operations, stage
handlers and content handlers.

http://monkey-project.com/?ref=ELCE2015

Architecture

http://monkey-project.com/?ref=ELCE2015

Monkey HTTP Server
Architecture

http://monkey-project.com/?ref=ELCE2015

Monkey HTTP Server
Master Process

● Prepare the environment.

● Read and process configuration.

● Load plugins and initialize them.

● Create a Scheduler instance.

● All things required before joining
the event loop.

http://monkey-project.com/?ref=ELCE2015

Monkey HTTP Server
Scheduler

● Balancing mode / OS check:
● Fair balancing
● Shared TCP ports (SO_REUSEPORT)

● Setup Listeners.

● Create the event loop for each
worker.

● Handle incoming connections.

http://monkey-project.com/?ref=ELCE2015

Monkey HTTP Server
Scheduler mode: Fair balancing

● One scheduler instance.

● It accepts all connections.

● Distribute to the less busy
worker.

● Old fashion mechanism.

http://monkey-project.com/?ref=ELCE2015

Monkey HTTP Server
Scheduler mode: Shared TCP ports

● Scheduler handler, one per
worker.

● Connections are distributed
by the Kernel.

● High performance, less
contention.

● SO_REUSEPORT

http://monkey-project.com/?ref=ELCE2015

Monkey HTTP Server
Scheduler: Listeners

● Bind a network address to
listen for connections.

● TCP port

● Associate Network I/O layer
handler plugin.

● Associate protocol handler
for each connection.

http://monkey-project.com/?ref=ELCE2015

Monkey HTTP Server
Workers

● Each worker have one event loop.

● Associate Listeners with connections.

● Handle protocol operations based on
events notified.

● Timeout connections.

● Cleanup sessions.

http://monkey-project.com/?ref=ELCE2015

Monkey HTTP Server
Workers: event loop

http://monkey-project.com/?ref=ELCE2015

Plugins

http://monkey-project.com/?ref=ELCE2015

Monkey HTTP Server
Plugins

● Monkey core provides only basic
HTTP processing

● Plugins provides interfaces for:
● Network I/O operations
● Security
● Content Handling
● HTTP Stages / Hooks

http://monkey-project.com/?ref=ELCE2015

Monkey Plugins
Network Layer: I/O

● Liana: Basic socket I/O handling, for
short plain sockets.

● TLS: built on top of mbedTLS, provides
SSL and TLS encryption capabilities
when writing/reading data over sockets.

“Monkey core and content handling plugins are not
 aware about how the network I/O is being handled,

unless they ask for”

http://tls.mbed.org/
http://monkey-project.com/?ref=ELCE2015

Monkey Plugins
Plugins: stages

STAGE 10 Connection accepted.

STAGE 20 Request have been received.

STAGE 30 Content handler.

STAGE 40 Response completed.

STAGE 50 Connection closed.

Each stage represents a phase of an incoming request
cycle inside the server:

http://monkey-project.com/?ref=ELCE2015

Monkey Plugins
Plugins: STAGE 10

Every time a connection is accepted by
the scheduler, the plugins associated with
this stage are triggered.

The security plugin mandril, hooks to this
stage and provides restrictions by IP.

http://monkey-project.com/?ref=ELCE2015

Monkey Plugins
Plugins: STAGE 20

This stage triggers the plugins callbacks
every time a request have arrived
successfully to the server.

http://monkey-project.com/?ref=ELCE2015

Monkey Plugins
Plugins: STAGE 30

Well known as the content handler, owns
the request and process a response. Some
plugins that works at this level are:

● FastCGI
● CGI
● Directory Listing
● Duda I/O

http://monkey-project.com/?ref=ELCE2015

Monkey Plugins
Plugins: STAGE 40

Once a request have finished like
completed successfully or due to an
exception, this stage is triggered.

The logger plugin makes use of this stage
to make sure to register all kind of events.

http://monkey-project.com/?ref=ELCE2015

Monkey Plugins
Plugins: STAGE 50

This stage triggers the associated
callbacks every time a TCP connection
is closed by a protocol, scheduler timeout
or due to any network anomaly found.

http://monkey-project.com/?ref=ELCE2015

Monkey HTTP Server
Memory Handling

● Just one memory allocation per TCP connection.

● Jemalloc memory allocator built-in by default, if desired
it can be disabled at build time.

http://www.canonware.com/jemalloc
http://monkey-project.com/?ref=ELCE2015

Monkey HTTP Server
System calls / Tweaks

● sendfile(2) static content delivery
● writev(2) write multiple buffers as an array (headers)
● splice(2) move data between file descriptors (logger)
● epoll(7) I/O event notification on Linux
● kqueue(2) I/O event notification on OSX & BSD
● accept4(2) accept connection and set option (non block)

● TCP_CORK send only full packets (on-demand)
● SO_REUSEPORT shared TCP ports (if available)
● SOCK_NONBLOCK non-blocking sockets

http://monkey-project.com/?ref=ELCE2015

Monkey HTTP Server
Clock thread: cached date

The server spawns a thread named clock. It basically
update a local memory buffer with a formatted version
of the current time. This info is mandatory in the response
header.

note: if you get 1000 request per second, you don't want
to do a string formatting 1000 times for the same time.

http://monkey-project.com/?ref=ELCE2015

Monkey HTTP Server
Indented Configuration

Force people to use an indented format, avoid a
spaghetti configuration.

note: it works!, read Python code ;)

http://monkey-project.com/?ref=ELCE2015

Monkey HTTP Server
Linux Kernel detection

If running on Linux, check the Kernel version and enable
some features if they are available, e.g:

● TCP_FASTOPEN
● SO_REUSEPORT
● TCP_AUTOCORKING (currently disabled)

http://monkey-project.com/?ref=ELCE2015

Monkey HTTP Server
Embedded Linux

● Monkey is a Yocto compliant project and available through
meta-openembedded.

● We distribute packages for Raspbian

http://monkey-project.com/?ref=ELCE2015

Monkey HTTP Server
General features

● HTTP/1.1
● Virtual Hosts
● IPv4 / IPv6
● TLS/SSL
● CGI

● FastCGI
● Directory Listing
● Log Writer
● Basic Authentication

http://monkey-project.com/?ref=ELCE2015

HTTP/2.0

http://monkey-project.com/?ref=ELCE2015

Monkey and HTTP/2.0
Status

● Internals need some rewrite to start implementing
the new version of the protocol: done.

● Listener must support multiple protocols: done.

● HTTP/2.0 handshake and further spec: work in process.

The goal is to have a functional HTTP/2.0 version before
the end of this year. The hard part were to extend
the internals to start supporting all requirements.

http://monkey-project.com/?ref=ELCE2015

Monkey
Roadmap

● HTTP/2.0
● Proxy reverse
● Restore library mode
● Co-routines
● Logging Layer instead of plugin hooks.
● URL rewrite support.

http://monkey-project.com/?ref=ELCE2015

Web Services

http://monkey-project.com/?ref=ELCE2015

Web Services
What do we usually expect

● Lightweight ?
● High Performance ?
● Extensible ?

● Scalabale ?
● Secure ?
●

http://monkey-project.com/?ref=ELCE2015

Web Services
A short story, facts:

● Company X was developing an Apnea monitoring
product for in-house usage (2011).

● Target device was a low cost ARM end device.

● They develop their web service in Java.

● When they ported the web service to the ARM device,
each HTTP request took a few seconds to reply =/ .

http://monkey-project.com/?ref=ELCE2015

Web Services
Workarounds

● Use a more expensive ARM device that Java supported
better ?

● Pay $Oracle to improve Java for that specific ARM
architecture ?

● Build the web service in a better language from scratch ?

http://monkey-project.com/?ref=ELCE2015

Web Services
Almost write from scratch

● Monkey was already optimized for ARM, it have an
extensible architecture.

● Write a Monkey extension that provides a flexible and
easy C API to implement web services.

● So a new project was born...

http://monkey-project.com/?ref=elce_webservice
http://monkey-project.com/?ref=ELCE2015

http://duda.io

Duda I/O
About

● Duda is a scalable web services stack (made in C).

● x86, x86_64 & ARM.

● Open Source / Apache License v2.0 .

● Target: high end production servers and Embedded Linux.

http://duda.io/
http://monkey-project.com/?ref=ELCE2015
http://duda.io/

Duda I/O
Features

● Event driven

● Friendly C API / Objects

● Co-routines

● HTTP / HTTPS

● WebSockets

● JSON / MySQL / Redis / SQLite

● Packages support

● In-memory Key value store

● much more!...

http://monkey-project.com/?ref=ELCE2015
http://duda.io/

Duda I/O
Architecture

http://monkey-project.com/?ref=ELCE2015
http://duda.io/

Duda I/O
Performance matters!

http://monkey-project.com/?ref=ELCE2015
http://duda.io/

Duda I/O
Production ready

● Big Data

● Real Time Bidding

● Home Automation

● Mobile Backends

● Etc...

http://monkey-project.com/?ref=ELCE2015
http://duda.io/

Monkey and IoT

http://monkey-project.com/?ref=ELCE2015

Internet of Things
Facts

● IoT will grow to many billions of devices over the
next decade.

● Now it's about device to device connectivity.

● Different frameworks and protocols are emerging.

● It needs Logging.

http://monkey-project.com/?ref=ELCE2015

Internet of Things
Alliances

Vendors formed alliances to join forces and develop
generic software layers for their products:

http://monkey-project.com/?ref=ELCE2015

Internet of Things
Solutions provided

Alliance Framework

→

→

http://monkey-project.com/?ref=ELCE2015

IoT and Big Data
Analytics

IoT requires a generic solution to collect events and
data from different sources for further analysis.

Data can come from a specific framework, radio device,
sensor and others. How do we collect and unify data
properly ?

http://monkey-project.com/?ref=ELCE2015

http://fluentbit.io

Fluent Bit
Open Source data collector

It let's you collect data from IoT/Embedded
devices and transport It to third party
services.

http://monkey-project.com/?ref=ELCE2015

Fluent Bit
Targets

● Services

● Sensors / Signals / Radios

● Operating System information

● Automotive / Telematics

http://monkey-project.com/?ref=ELCE2015

Fluent Bit
I/O

http://monkey-project.com/?ref=ELCE2015

Fluent Bit
Direct Output

http://monkey-project.com/?ref=ELCE2015

Fluent Bit
Architecture

http://monkey-project.com/?ref=ELCE2015

Fluent Bit
Core Engine

● Everything related to initialization.

● Interface plugins.

● Abstract network operations.

● Make the magic happens.

http://monkey-project.com/?ref=ELCE2015

Fluent Bit
Input Plugins

● Collect data.

● Behave as a network service, built-in
metric or generator.

● It runs at intervals of time (triggered
by the Engine) or upon file descriptor
events.

http://monkey-project.com/?ref=ELCE2015

Fluent Bit
Output Pllugins

● Take buffered data and enqueue it
for delivery.

● It knows how to send data to X
endpoint or service. Usually deal
with protocols.

http://monkey-project.com/?ref=ELCE2015

Fluent Bit
Stack Providers

Fluent Bit have three dependencies
which are distributed in the source
code and are linked statically.

These components are helpers for
the Engine and Plugins Manager.

http://monkey-project.com/?ref=ELCE2015

Fluent Bit
Monkey / HTTP Stack Provider

Monkey is a web server that provides
an embeddable HTTP stack and some
extra routines to handle configuration
files, memory handling, event loops,
string manipulation within others.

http://monkey-project.com/
http://monkey-project.com/?ref=ELCE2015

Fluent Bit
Library Mode

http://monkey-project.com/?ref=ELCE2015

Join us!

Thank you!

● http://monkey-project.com

● http://duda.io

● http://fluentbit.io

● http://github.com/monkey

● http://github.com/fluent

@edsiper

http://monkey-project.com/
http://duda.io/
http://fluentbit.io/
http://github.com/monkey
http://monkey-project.com/?ref=ELCE2015

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

