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Chartbeat is the content 
intelligence platform that 
empowers storytellers, 
audience builders and 
analysts to drive the stories 
that change the world.

ABOUT US

Key Innovations

• Real Time Editorial Analytics
• Focus on Engaged Time
• Solving the Social News 

Gap
• NEW: Intelligent Reporting
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Power to the press.
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• Who we are
• What our architecture looks like
• Why we adopted Aurora / Mesos 
• How we use Aurora 
• A deeper look at a few interesting features

THIS TALK
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• 75 employees
• 8 year old, VC backed startup 
• 20-ish engineers
• 5 Platform/DevOps engineers
• Office in NYC 
• Hosted on AWS
• Every engineer pushes code. Frequently

ABOUT US: OUR TEAM
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What does Chartbeat do?

Dashboards

• Real Time
• Historical
• Video
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What does Chartbeat do?

Optimization

• Heads Up Display
• Headline Testing

Reporting

• Automated Reports
• Advanced Querying
• APIs
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Some #BigData Numbers

We Get a Lot of Traffic.

Sites Using Chartbeat Pings/Sec Tracked Pageviews/Month

50k+ 300K 50B
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Our Stack

Most of the code 
is python, clojure 
or C

It’s not all pretty, 
but we love it.
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Why Mesos?
Why Now?
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Freedom to innovate is the result of a successful product.

Setting ourselves up for the next 5 years.

Goals

• Reduce server footprint

• Provide faster & more reliable services to customers

• Migrate most jobs in a year

• Make life better for engineering team

• Currently - 1200 cores in our cluster, almost all jobs 
migrated

GOALS OF THE PROJECT 
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Happy 
Engineers?
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Happy engineers are productive engineers. 

They like:

• Uneventful on-call rotations

• Quick and easy pushes to production

• Easy to use monitoring and debugging tools

• Fast scaling and configuration of jobs

• Writing product code and not messing with DevOps stuff

• Self Service DevOps that’s easy to use

WHAT MAKES ENGINEERS HAPPY?
Good DevOps Ergonomics
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Platform Team Mission 
Statement

Source: Platform Team V2MOM, 
OKR, KPI or some such document 
c. 2017

… to build an efficient, effective, and 
secure development platform for 
Chartbeat engineers.

We believe an efficient and effective 
development platform leads to fast 
execution. 
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Before Mesos there
was Puppet*

● Hiera roles -> AWS tag
● virtual_env -> .deb
● Mostly single purpose 

servers
● Fabric based DevOps CRUD
● Flexible, but complicated

*We still use puppet to manage our mesos servers :-)
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Which “scales” like this

● Jan 2016: 773 EC2 
Instances* 

● 125 Different Roles
● Hard on DevOps
● Confusing for Product 

Engineers
● Wasted Resources
● Slow to Scale

* Today we have about 500
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Whatever solution we choose must...

• Allow us to solve python dependency management for once and for all

• Play nicely with our current workflow and be hackable

• Be OSS and supported by an active community using the product irl

• Allow us to migrate jobs safely and over time

• Make our engineers happy

SOLUTION REQUIREMENTS
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We Chose Aurora

This talk will not be about that decision vs other mesos frameworks. 
Read my blog post or let’s grab a beer later.



19

Components Jobs / Tasks and Processes

Aurora in a Nutshell
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an incomplete list of ones we have found useful

• Job Templating in Python

• Support for Crons and Long Running Jobs - Autorecovery!

• Hackable CLI for Job Management

• Service Discovery through Zookeeper

• Flexible Port Mapping

• Rich API for Monitoring 

• Job Organization and Quotas by User/Environment/Job

Aurora User Features 
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Aurora Hello World 

pkg_path = '/vagrant/hello_world.py'

import hashlib

with open(pkg_path, 'rb') as f:

  pkg_checksum = hashlib.md5(f.read()).hexdigest()

# copy hello_world.py into the local sandbox

install = Process(

  name = 'fetch_package' ,

  cmdline = 'cp %s . && echo %s && chmod +x hello_world.py'  % (pkg_path, pkg_checksum))

# run the script

hello_world = Process(

  name = 'hello_world',

  cmdline = 'python -u hello_world.py' )

# describe the task

hello_world_task = SequentialTask(

  processes = [install, hello_world],

  resources = Resources(cpu = 1, ram = 1*MB, disk=8*MB))

jobs = [

  Service(cluster = 'devcluster',environment = 'devel', role = 'www-data', name = 'hello_world', task = 

hello_world_task)]

● Processes run unix 
commands

● Tasks are pipelines 
of processes

● A Job binds it all 
together



22

It turns out that the 
vast majority of our 
jobs follow one of 3 
patterns:

1. a clojure kafka 
consumer 

2. a python worker
3. a python api 

server 

Take a step back and 
understand the problem 
you’re trying to solve
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Good DevOps is a Balance 
Between Flexibility and 

Reliability and Sometimes it 
Takes a Lot of Work
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Our API Servers follow this 
pattern:

1. AuthProxy bound on 
HTTP Port

2. API Server Bound on 
Private Port

3. Some Health Check 
Bound on Health Port
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How do We 
Integrate Aurora 

With Our 
Workflow?
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what does our workflow feel like?

● git is source of truth for code and configurations
● Deployed code tagged with git hash
● Individual projects can run in prod / dev / local environments 
● Do everything from the command line
● Prefer writing scripts to memorizing commands
● Don’t reinvent things that work - Make templates for common tasks

INTEGRATE WITH OUR WORKFLOW
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Source: 

wiki.c2.com/?LazinessImpatienceHubris

We will encourage you to develop 
the three great virtues
of a programmer: laziness, 
impatience, and hubris.

Larry Wall, Programming Perl
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Major Decision 
Time
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BIG DECISIONS

1. Adopt Pants
2. Wrap Aurora CLI with our own client
3. Create a library of Aurora templates
4. Let Aurora keep jobs running and disks clean
5. Dive in and embrace sandboxes for isolation
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Step 1. Make 
Aurora Fit In
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Our Aurora Wrapper

• Separate common config options from aurora configs into <job>.yaml 
file

• Require versioned artifacts built by CI server to deploy
• Require git master to push to prod

• 1 to 1 mapping between yaml file and job (prod or dev)
• Many to 1 mapping between yaml file and aurora configs

• Allow for job command line options to be set in yaml
• All configs live in single directory in repo - easy to find jobs
• Additional functionality for things like tailing output from running jobs
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Aurora CLI

Start a job named aa/cbops/prod/fooserver defined in ./aurora-jobs/fooserver.aurora:

Aurora:

> aurora create aa/cbops/prod/fooserver ./aurora-jobs/fooserver.aurora

Chartbeat:

> aurora-manage create fooserver --stage=prod

1. All configs are in one location

2. Production deploys require explicit flag

3. Consistent mapping between job name and config file(s)

4. All aurora client commands use aurora-manage wrapper
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Aurora + YAML   - eightball.yaml

file: eightball

user: cbe

buildname: eightball

hashtype: git

config:

 cpu: 0.25

 num_instances: 1

 ram: 300

 disk: 5000

taskargs:

 workers: 10

envs:

 prod:

   cpu: 1.5

   num_instances: 12

   taskargs:

     workers: 34

   githash: ABC123

 devel:

   githash: XYZ456

info about the 
job and build 
artifact

Resource 
requirements

Options for use in aurora 
template

Stage specific 
overrides

githash of artifact being 
deployed. Can be top 
level as well.
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Step 2: Write 
Templates
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Python modules to generate aurora templates for common use cases:

● Artifact installers (jars, tars, pex’es)
● JVM/JMX/Logging configs 
● General environment configs and setups 
● Local dynamic config file creation
● Access credentials to shared resources (DBs, ZKs, Kafka brokers, etc.)
● Common supporting tasks (AuthProxy, Health Checkers)

CUSTOM AURORA TEMPLATES
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Aurora + YAML   - eightball.aurora

PROFILE = make_profile()

PEX_PROFILE = make_pexprofile(‘eightball’)

SERVICES = get_service_struct()

install_pex = pex_install_template

opts = {

  '--port': '{{thermos.ports[private]}}',

  '--memcache_servers':'{{services.[memcache]}}',

  '--workers={{profile.taskargs[CB_TASK_WORKERS]}}  
'

  '--logstash_format': 'True'

}

run_server = Process(

  name=’eightball’,

  cmdline=make_cmdline('./{{pex.pexfile}}  
server',opts)

)

auth_proxy_processes= get_authproxy_processes()

health_check_processes= get_proxy_hc_processes(

      url="/private/stats/",  
port_name='private')

MAIN = make_main_template(

  ([install_eightball, eightball_server],

    
auth_proxy_processes,health_check_processes,),  
res=resources_template)

jobs = [

   job_template(task=MAIN,  

       health_check_config =  
health_check_config,

       update_config = update_config

   ).bind(pex=PEX_PROFILE,  

          profile=PROFILE,  

          services=SERVICES)

]

setup pystachio get helper 
processes

options to job 
process

server process

generate correctly 
ordered processes

Apply templates and run
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Aurora Templates++

 groot in ~/chartbeat/aurora/configs

± |master {1} ?:2 ✗| → ls igor_worker.aurora 

igor_worker.aurora

± |master {1} ?:2 ✗| → grep igor_worker *.yaml|wc -l

     104

± |master {1} ?:2 ✗| → grep igor_worker *.yaml|head -n 3

content_es_article_index.yaml:file: igor_worker

content_es_cluster_maintenance.yaml:file: igor_worker

content_es_fill_storyid.yaml:file: igor_worker

Most workers are built off of the same python 
framework. 

Each job gets its own git-hash named pex file with its 
specific dependencies.

Command line arguments determine the work to be 
done.

Engineers simply define their worker jobs in a few lines 
of yaml

Engineers are happy

bb/cbp/prod/content_es_fill_storyid and bb/cbp/devel/content_es_fill_storyid
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Our new ETL pipeline “Deep Water”

● Steps defined in python classes
● Each step receives a set of independent aurora jobs (defined in yaml) 
● Pipeline state stored in Postgres for consistency 

CUSTOM AURORA TEMPLATES+++
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Before deploying anything, we needed solutions for the following

● Build, Packaging & Deployment
● Request Routing
● Metrics / Monitoring
● Logfile Collection & Analysis 
● Configuration Management
● Probably some other stuff

Non-Mesos Components
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Question #1:
Build, Packaging & 

Deployment

We like our git 
mono-repo / Jenkins 

workflow
Can we make this work 

for python 
dependencies? 

Actually we really don’t like 
virtualenv that much...
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Answer: Yes. 
Put on your pants
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A build system for big repos, especially python ones 

- pantsbuild.io

● Maven for Python (and Java…) 
● Creates PEX files with dependencies bundled in (3rd party and intra-repo)
● Directory level BUILD files 
● Incremental builds in mono-repo
● Artifacts can include git-hash in filename
● No more repo level dependency conflicts
● Happens to be how Aurora is built :-)
● Huge migration effort, huge benefits

Pants in one slide
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Question #2:
Routing

How are we going to 
route traffic as jobs 
move around the 

cluster?
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Answer: 
HAProxy & Synapse
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Synapse in a Nutshell

● Config is yaml superset of 

HAProxy config

● Aurora updates zookeeper with 

list of task/port mappings

● Synapse discovers service 

changes in zk and updates 

HAProxy

● Synapse generates HAProxy 

config

● Puppet pushes synapse 

changes to HAProxy servers

https://github.com/airbnb/synapse
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Question #3:
Metric Collection, 

Reporting and 
Monitoring

Can we easily 
collect metrics for all 

of our jobs? It’s 
kinda ad-hoc now. 
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Answer: 
Consolidate on: 

OpenTSDB + Grafana 
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OpenTSDB -> Grafana / Nagios -> PagerDuty 

- Consistent job naming makes everything easier

● Automatic collection of aurora job resource utilization
● Automatic collection of HAProxy metrics
● Libraries for python/clojure auto tag TSDB metrics with job info
● Custom JMX collector pulls metrics from JVM jobs

○ Discovers jobs in ZK just like Synapse
● Grafana dashboards for all
● Nagios -> Pagerduty alerting

○ most simple failures are just restarted by aurora!

How We Collect and Report Metrics
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Question #3:
Logfile Analysis

Users like to ssh and 
tail. How do we 

make that easy for 
them?
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Answer: 
Flume / Athena and tailll
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We didn’t like ELK

● Users want “polysh” - aurora-manage tailll <jobname>
● Aurora Web UI allows “checking” on logs
● Aurora CLI allows ssh to a single instance
● Flume -> S3 -> Athena for historical forensics
● Don’t rotate logs - let aurora kill sandboxes that fill up disk is cheap

How We Read Log Files 
It turns out log file aggregation is hard



52

Almost 2 years later - we couldn’t be happier

● Huge reduction in frequency of “on-call events”
● Reduced EC2 instance costs by 1/3
● Engineers survey shows they “rarely” experience blockers deploying 
● Changed our entire approach to DevOps and architecture

SUMMARY
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