
A Year* With Apache Aurora:
Cluster Management at Chartbeat

October 5, 2017

Rick Mangi

Director of Platform Engineering

@rmangi / rick@chartbeat.com

2

Chartbeat is the content
intelligence platform that
empowers storytellers,
audience builders and
analysts to drive the stories
that change the world.

ABOUT US

Key Innovations

• Real Time Editorial Analytics
• Focus on Engaged Time
• Solving the Social News

Gap
• NEW: Intelligent Reporting

3

Power to the press.

4

• Who we are
• What our architecture looks like
• Why we adopted Aurora / Mesos
• How we use Aurora
• A deeper look at a few interesting features

THIS TALK

5

• 75 employees
• 8 year old, VC backed startup
• 20-ish engineers
• 5 Platform/DevOps engineers
• Office in NYC
• Hosted on AWS
• Every engineer pushes code. Frequently

ABOUT US: OUR TEAM

6

What does Chartbeat do?

Dashboards

• Real Time
• Historical
• Video

7

What does Chartbeat do?

Optimization

• Heads Up Display
• Headline Testing

Reporting

• Automated Reports
• Advanced Querying
• APIs

8

Some #BigData Numbers

We Get a Lot of Traffic.

Sites Using Chartbeat Pings/Sec Tracked Pageviews/Month

50k+ 300K 50B

9

Our Stack

Most of the code
is python, clojure
or C

It’s not all pretty,
but we love it.

10

Why Mesos?
Why Now?

11

Freedom to innovate is the result of a successful product.

Setting ourselves up for the next 5 years.

Goals

• Reduce server footprint

• Provide faster & more reliable services to customers

• Migrate most jobs in a year

• Make life better for engineering team

• Currently - 1200 cores in our cluster, almost all jobs
migrated

GOALS OF THE PROJECT

12

Happy
Engineers?

13

Happy engineers are productive engineers.

They like:

• Uneventful on-call rotations

• Quick and easy pushes to production

• Easy to use monitoring and debugging tools

• Fast scaling and configuration of jobs

• Writing product code and not messing with DevOps stuff

• Self Service DevOps that’s easy to use

WHAT MAKES ENGINEERS HAPPY?
Good DevOps Ergonomics

14

Platform Team Mission
Statement

Source: Platform Team V2MOM,
OKR, KPI or some such document
c. 2017

… to build an efficient, effective, and
secure development platform for
Chartbeat engineers.

We believe an efficient and effective
development platform leads to fast
execution.

15

Before Mesos there
was Puppet*

● Hiera roles -> AWS tag
● virtual_env -> .deb
● Mostly single purpose

servers
● Fabric based DevOps CRUD
● Flexible, but complicated

*We still use puppet to manage our mesos servers :-)

16

Which “scales” like this

● Jan 2016: 773 EC2
Instances*

● 125 Different Roles
● Hard on DevOps
● Confusing for Product

Engineers
● Wasted Resources
● Slow to Scale

* Today we have about 500

17

Whatever solution we choose must...

• Allow us to solve python dependency management for once and for all

• Play nicely with our current workflow and be hackable

• Be OSS and supported by an active community using the product irl

• Allow us to migrate jobs safely and over time

• Make our engineers happy

SOLUTION REQUIREMENTS

18

We Chose Aurora

This talk will not be about that decision vs other mesos frameworks.
Read my blog post or let’s grab a beer later.

19

Components Jobs / Tasks and Processes

Aurora in a Nutshell

20

an incomplete list of ones we have found useful

• Job Templating in Python

• Support for Crons and Long Running Jobs - Autorecovery!

• Hackable CLI for Job Management

• Service Discovery through Zookeeper

• Flexible Port Mapping

• Rich API for Monitoring

• Job Organization and Quotas by User/Environment/Job

Aurora User Features

21

Aurora Hello World

pkg_path = '/vagrant/hello_world.py'

import hashlib

with open(pkg_path, 'rb') as f:

 pkg_checksum = hashlib.md5(f.read()).hexdigest()

copy hello_world.py into the local sandbox

install = Process(

 name = 'fetch_package' ,

 cmdline = 'cp %s . && echo %s && chmod +x hello_world.py' % (pkg_path, pkg_checksum))

run the script

hello_world = Process(

 name = 'hello_world',

 cmdline = 'python -u hello_world.py')

describe the task

hello_world_task = SequentialTask(

 processes = [install, hello_world],

 resources = Resources(cpu = 1, ram = 1*MB, disk=8*MB))

jobs = [

 Service(cluster = 'devcluster',environment = 'devel', role = 'www-data', name = 'hello_world', task =

hello_world_task)]

● Processes run unix
commands

● Tasks are pipelines
of processes

● A Job binds it all
together

22

It turns out that the
vast majority of our
jobs follow one of 3
patterns:

1. a clojure kafka
consumer

2. a python worker
3. a python api

server

Take a step back and
understand the problem
you’re trying to solve

23

Good DevOps is a Balance
Between Flexibility and

Reliability and Sometimes it
Takes a Lot of Work

24

Our API Servers follow this
pattern:

1. AuthProxy bound on
HTTP Port

2. API Server Bound on
Private Port

3. Some Health Check
Bound on Health Port

25

How do We
Integrate Aurora

With Our
Workflow?

26

what does our workflow feel like?

● git is source of truth for code and configurations
● Deployed code tagged with git hash
● Individual projects can run in prod / dev / local environments
● Do everything from the command line
● Prefer writing scripts to memorizing commands
● Don’t reinvent things that work - Make templates for common tasks

INTEGRATE WITH OUR WORKFLOW

27

Source:

wiki.c2.com/?LazinessImpatienceHubris

We will encourage you to develop
the three great virtues
of a programmer: laziness,
impatience, and hubris.

Larry Wall, Programming Perl

28

Major Decision
Time

29

BIG DECISIONS

1. Adopt Pants
2. Wrap Aurora CLI with our own client
3. Create a library of Aurora templates
4. Let Aurora keep jobs running and disks clean
5. Dive in and embrace sandboxes for isolation

30

Step 1. Make
Aurora Fit In

31

Our Aurora Wrapper

• Separate common config options from aurora configs into <job>.yaml
file

• Require versioned artifacts built by CI server to deploy
• Require git master to push to prod

• 1 to 1 mapping between yaml file and job (prod or dev)
• Many to 1 mapping between yaml file and aurora configs

• Allow for job command line options to be set in yaml
• All configs live in single directory in repo - easy to find jobs
• Additional functionality for things like tailing output from running jobs

32

Aurora CLI

Start a job named aa/cbops/prod/fooserver defined in ./aurora-jobs/fooserver.aurora:

Aurora:

> aurora create aa/cbops/prod/fooserver ./aurora-jobs/fooserver.aurora

Chartbeat:

> aurora-manage create fooserver --stage=prod

1. All configs are in one location

2. Production deploys require explicit flag

3. Consistent mapping between job name and config file(s)

4. All aurora client commands use aurora-manage wrapper

33

Aurora + YAML - eightball.yaml

file: eightball

user: cbe

buildname: eightball

hashtype: git

config:

 cpu: 0.25

 num_instances: 1

 ram: 300

 disk: 5000

taskargs:

 workers: 10

envs:

 prod:

 cpu: 1.5

 num_instances: 12

 taskargs:

 workers: 34

 githash: ABC123

 devel:

 githash: XYZ456

info about the
job and build
artifact

Resource
requirements

Options for use in aurora
template

Stage specific
overrides

githash of artifact being
deployed. Can be top
level as well.

34

Step 2: Write
Templates

35

Python modules to generate aurora templates for common use cases:

● Artifact installers (jars, tars, pex’es)
● JVM/JMX/Logging configs
● General environment configs and setups
● Local dynamic config file creation
● Access credentials to shared resources (DBs, ZKs, Kafka brokers, etc.)
● Common supporting tasks (AuthProxy, Health Checkers)

CUSTOM AURORA TEMPLATES

36

Aurora + YAML - eightball.aurora

PROFILE = make_profile()

PEX_PROFILE = make_pexprofile(‘eightball’)

SERVICES = get_service_struct()

install_pex = pex_install_template

opts = {

 '--port': '{{thermos.ports[private]}}',

 '--memcache_servers':'{{services.[memcache]}}',

 '--workers={{profile.taskargs[CB_TASK_WORKERS]}}
'

 '--logstash_format': 'True'

}

run_server = Process(

 name=’eightball’,

 cmdline=make_cmdline('./{{pex.pexfile}}
server',opts)

)

auth_proxy_processes= get_authproxy_processes()

health_check_processes= get_proxy_hc_processes(

 url="/private/stats/",
port_name='private')

MAIN = make_main_template(

 ([install_eightball, eightball_server],

auth_proxy_processes,health_check_processes,),
res=resources_template)

jobs = [

 job_template(task=MAIN,

 health_check_config =
health_check_config,

 update_config = update_config

).bind(pex=PEX_PROFILE,

 profile=PROFILE,

 services=SERVICES)

]

setup pystachio get helper
processes

options to job
process

server process

generate correctly
ordered processes

Apply templates and run

37

Aurora Templates++

 groot in ~/chartbeat/aurora/configs

± |master {1} ?:2 ✗| → ls igor_worker.aurora

igor_worker.aurora

± |master {1} ?:2 ✗| → grep igor_worker *.yaml|wc -l

 104

± |master {1} ?:2 ✗| → grep igor_worker *.yaml|head -n 3

content_es_article_index.yaml:file: igor_worker

content_es_cluster_maintenance.yaml:file: igor_worker

content_es_fill_storyid.yaml:file: igor_worker

Most workers are built off of the same python
framework.

Each job gets its own git-hash named pex file with its
specific dependencies.

Command line arguments determine the work to be
done.

Engineers simply define their worker jobs in a few lines
of yaml

Engineers are happy

bb/cbp/prod/content_es_fill_storyid and bb/cbp/devel/content_es_fill_storyid

38

Our new ETL pipeline “Deep Water”

● Steps defined in python classes
● Each step receives a set of independent aurora jobs (defined in yaml)
● Pipeline state stored in Postgres for consistency

CUSTOM AURORA TEMPLATES+++

39

Before deploying anything, we needed solutions for the following

● Build, Packaging & Deployment
● Request Routing
● Metrics / Monitoring
● Logfile Collection & Analysis
● Configuration Management
● Probably some other stuff

Non-Mesos Components

40

Question #1:
Build, Packaging &

Deployment

We like our git
mono-repo / Jenkins

workflow
Can we make this work

for python
dependencies?

Actually we really don’t like
virtualenv that much...

41

Answer: Yes.
Put on your pants

42

A build system for big repos, especially python ones

- pantsbuild.io

● Maven for Python (and Java…)
● Creates PEX files with dependencies bundled in (3rd party and intra-repo)
● Directory level BUILD files
● Incremental builds in mono-repo
● Artifacts can include git-hash in filename
● No more repo level dependency conflicts
● Happens to be how Aurora is built :-)
● Huge migration effort, huge benefits

Pants in one slide

43

Question #2:
Routing

How are we going to
route traffic as jobs
move around the

cluster?

44

Answer:
HAProxy & Synapse

45

Synapse in a Nutshell

● Config is yaml superset of

HAProxy config

● Aurora updates zookeeper with

list of task/port mappings

● Synapse discovers service

changes in zk and updates

HAProxy

● Synapse generates HAProxy

config

● Puppet pushes synapse

changes to HAProxy servers

https://github.com/airbnb/synapse

46

Question #3:
Metric Collection,

Reporting and
Monitoring

Can we easily
collect metrics for all

of our jobs? It’s
kinda ad-hoc now.

47

Answer:
Consolidate on:

OpenTSDB + Grafana

48

OpenTSDB -> Grafana / Nagios -> PagerDuty

- Consistent job naming makes everything easier

● Automatic collection of aurora job resource utilization
● Automatic collection of HAProxy metrics
● Libraries for python/clojure auto tag TSDB metrics with job info
● Custom JMX collector pulls metrics from JVM jobs

○ Discovers jobs in ZK just like Synapse
● Grafana dashboards for all
● Nagios -> Pagerduty alerting

○ most simple failures are just restarted by aurora!

How We Collect and Report Metrics

49

Question #3:
Logfile Analysis

Users like to ssh and
tail. How do we

make that easy for
them?

50

Answer:
Flume / Athena and tailll

51

We didn’t like ELK

● Users want “polysh” - aurora-manage tailll <jobname>
● Aurora Web UI allows “checking” on logs
● Aurora CLI allows ssh to a single instance
● Flume -> S3 -> Athena for historical forensics
● Don’t rotate logs - let aurora kill sandboxes that fill up disk is cheap

How We Read Log Files
It turns out log file aggregation is hard

52

Almost 2 years later - we couldn’t be happier

● Huge reduction in frequency of “on-call events”
● Reduced EC2 instance costs by 1/3
● Engineers survey shows they “rarely” experience blockers deploying
● Changed our entire approach to DevOps and architecture

SUMMARY

Rick Mangi
rick@chartbeat.com
@rmangi

medium.com/chartbeat-engineering

Thank you.

mailto:rick@chartbeat.com

