Making Open Source Hardware IoT with Raspberry Pi

Leon Anavi Konsulko Group leon.anavi@konsulko.com OpenIoT Summit 21-23 February, Portland, Oregon

Agenda

- Raspberry Pi add-on boards for IoT
- Raspberry Pi HAT
- Raspberry Pi pHAT
- Designing an open source hardware
- Software support

What is Open Source Hardware? Group

Design of physical objects that is publicly available so that anyone can study, modify, distribute, make, and sell the design or hardware based on that design

Open Source Hardware Licenses Grou

- GNU General Public License (GPL)
- Creative Commons Attribution-ShareAlike
- CERN Open Hardware License (OHL)
- TAPR Open Hardware License (OHL)
- FreeBSD
- MIT
- Other

Why Raspberry Pi?

- Low cost credit-card-sized computer
- Good software support
- Huge community

NOT open source hardware!

Raspberry Pi

- 2009 Raspberry Pi Foundation
- 2012 The 1st Raspberry Pi
- 2014 Raspberry Pi B+
- 2016 Raspberry Pi Zero

Raspberry Pi Flavors

Many add-on boards

Important Change in B+

Raspberry Pi B (2011)

Raspberry Pi B+ (2014)

Raspberry Pi Flavors

40 Pin Header

	5V Power	5V Power	Ground	GPIO14 UARTO_TXD	GPIO15 UARTO_RXD	GPIO18 PCM_CLK	Ground	GPI023	GP1024	Ground	GP1025	GPIO8 SPIO_CEO_N	GPIO7 SPIO_CE1_N	ID_SC I2C ID EEPROM	Ground	GP1012	Ground	GP1016	GP1020	GP1021	
Pi Model B/B+	1 2	8	(2)	7 8	(a)	11 12	13 14	15 16	17 18	6	21 22	23 24	92 93	27 28	29 30	31 32	33	35 36	37 38	69 40	Pi Model B+
	3V3 Power	GP102 SDA112C	GPIO3 SCL112C	GPI04	Ground	GP1017	GP1027	GP1022	3V3 Power	GPIO10 SPI0_MOSI	GPIO9 SPIO_MISO	GPIO11 SPI0_SCLK	Ground	ID_SD 12C ID EEPROM	GPI05	GP106	GP1013	GP1019	GP1026	Ground	

Raspberry Pi HAT

INTRODUCING RASPBERRY PI HATS

Since 31st July 2014

Raspberry Pi HAT

HAT

(Hardware Attached on Top)

HAT Requirements

- Form factor and dimensions (65x56mm)
- 40 pin header compatible with Raspberry Pi B+ and the newer models
- EEPROM with device tree fragment
- Details:

https://www.raspberrypi.org/blog/introducing-raspberry-pi-hats/

https://github.com/raspberrypi/hats

pHAT

- Form factor suitable for Raspberry Pi Zero with 4 mount holes and dimensions 65x30mm
- 40 pin through-hole header
- EEPROM not mandatory

Sense HAT

- Official product of the Raspberry Pi Foundation
- Sensors for temperature, humidity, barometric pressure, gyroscope, accelerometer, magnetometer
- 8x8 RGB LED matrix
- Five-button joystick

More...

Making Your 1st HAT

Requirements:

- Idea (for example: a blinking LED)
- Soldering equipment
- Adafruit Perma-Proto HAT
- Additional hardware resources (depending on the idea)

Device Tree Fragment

- Data structure with hardware description of the Raspberry Pi HAT stored on EEPROM
- 8 pin DIP I2C EEPROM
- Recommended EEPROM CAT24C32

Flashing the EEPROM

- Download and build eepromutils
 - https://github.com/raspberrypi/hats
- Create a text file with description of your HAT using eeprom_settings.txt for example
- Generate .epp file using eepmake
- Flash the binary file to the EEPROM using eepflash.sh

EEPROM Wiring

- Flashing the EEPROM: pin 2 and 3
- Reading from the EEPROM: pin 27 and 28

device-tree/hat

- Directory /proc/device-tree/hat
- Information about product name, version, vendor and UUID

```
pi@raspberrypi:~

pi@raspberrypi:~ $ ls /proc/device-tree/hat/
name product product_id product_ver uuid vendor
pi@raspberrypi:~ $ cat /proc/device-tree/hat/product
ANAVI Infrared pHATpi@raspberrypi:~ $
pi@raspberrypi:~ $ cat /proc/device-tree/hat/vendor
ANAVIpi@raspberrypi:~ $
pi@raspberrypi:~ $
pi@raspberrypi:~ $
```

Designing PCB

Electronics Design Automation Suites:

- KiCAD (free & open source software)
- Eagle (free for small 2 Layer PCB)
- Other

KiCAD Advantages

- Free & open source software (GPLv3+)
- Cross platform (works on GNU/Linux distributions, MS Windows and Mac OS X)
- Integrated 3D viewer
- Contributions from CERN developers
- Used by Olimex for the design of their new open source hardware boards

HAT Templates

KiCAD

https://github.com/xesscorp/RPi_Hat_Template

http://gitlab.openfet.com/julien/pihat-template

Eagle

http://www.flyfish-tech.com/pub/RasPi-BplusHAT.zip

My OSHW HAT & pHAT

Anavi Flex HAT

https://github.com/AnaviTech/anavi-flex

Anavi Infrared pHAT

https://github.com/AnaviTech/anavi-infrared

KiCAD Pcbnew

Recommendations

- Comply with the minimum requirements of the PCB manufacturer for trace spaces, drills and angular rings
- Keep in mind the complexity of the assembly process while designing the PCB
- Consider the location of Raspberry Pi components while placing components on your HAT and avoid any potential negative impact

Prototypes

PCB printing services from:

- OSHPark (Made in the USA)
- China
- Local

Software

- Python is popular programming language among Raspberry Pi makers
- WiringPi library for C/C++
- WiringPi language bindings: Java, JavaScript (Node.js), PHP, Perl, Go, Rust, etc.
- Other FOSS (LIRC, OpenCV, etc.)

Share your hardware and software under open source licenses:)

Thank You!

Useful links:

- https://www.raspberrypi.org/blog/introducing-raspberry-pi-hats/
- https://www.raspberrypi.org/magpi/make-your-own-hat/
- http://pinout.xyz/
- https://github.com/raspberrypi/hats
- https://github.com/AnaviTech
- http://wiringpi.com/
- http://kicad-pcb.org
- https://oshpark.com/

http://www.slideshare.net/leonanavi/making-open-source-hardware-iot-with-raspberry-pi