
Linux Kernel Power Management (PM)
Framework for ARM 64-bit Processors

L.Pieralisi

21/8/2014 - LinuxCon North America 2014

Outline

ARM 32-bit Linux kernel power management support for
huge legacy of ARM processors

from v4 Uniprocessor kernels to ARM v7 SMP multicluster
systems

Lack of established firmware interfaces is preventing merge of
power management software in the mainline kernel

Lots of tricky platform specific code, maintained as out of
tree BSP branches
Power management HW dependent SW layers incompatible
with most of kernel SW interfaces

ARM64 kernel port represents an opportunity to start afresh
and learn lessons from the past

Legacy ARM 32-bit Linux Kernel Power Management

Standards ? No, thanks

ARM vendors power controllers

Differentiating through design quirks

Standard power down procedures started appearing on ARM v7
TRMs

What works on ARM v7, might not on v6, and viceversa
ARM v7 power down procedure is standard, except for when it is not
....and then came SMP systems....

Kernel developers left to their own devices

Reverse engineering (lack of publicly available specs)
Power management interfaces designed for UP systems did not work
on SMP
Secure/non-secure split overriden in most upstream design
Kernel subsystems (eg CPUidle) redesigned to support HW bugs (eg
couple idle states)

ARM Chips Power Management Configurations

Multiple power islands
Devices and CPUs power
domains

Core gating and Cluster gating
RAM retention states
Caches management
Coherency management
Locking

Graphics power domain

Integration with CPU states

System sleep states

Always-on power domain

ARM Power Management HW/SW stack (1/2)

Cross-divisional collaborative effort between ARM SW/HW engineers

HW prototyping effort (TC2/Juno)

Power controller specifications
SW stack (Linux kernel/Trusted Firmware/power controller firmware)

Tackle ARM vendors power control fragmentation

Power management HW still a prominent feature of vendors design
Design quirks are the rule, not the exception

Ongoing effort at ARM to standardize main HW control feaures

HW SMP coherency management
Cache clean and invalidate (SW/HW)
Wake-up capabilities and GIC design

ARM Power Management HW/SW stack (2/2)

Development and deployment of PSCI (Power State Coordination
Interface) firmware interface

Device tree and ACPI bindings standardization

Provide OS with standard interfaces
Configuration data for power management subsystems (CPU/device
idle states)
Run-time services (CPU/devices power management)

Our Goal

Provide a HW/SW environment to foster power management
standardization

ARM Power Management: Secure Operations

Power management SW has to deal with secure operations

Coherency management, power control commands
Need for a standard API to communicate to secure world

ARM Power Management: Secure Operations

”... I guess what this ultimately comes down to is that we did accept
the work-arounds into the kernel source for secure parts - had we not
done that and set a clear message like ARM64 does that work-arounds
must be done prior to calling the kernel (irrespective of how that
happens, iow, whether boot or resume) then we wouldn’t have this
problem right now. Such a statement would have raised lots of
objections though, but with hindsight, it would have been the right thing
to do to overrule those objections and just mandate it. It would’ve been
a pain for some people, but we would not be in this situation now where
there is no proper solution which works for everyone.”

RMK

http://lists.infradead.org/pipermail/linux-arm-kernel/

2014-July/268718.html

http://lists.infradead.org/pipermail/linux-arm-kernel/2014-July/268718.html
http://lists.infradead.org/pipermail/linux-arm-kernel/2014-July/268718.html

ARM Power Management: Early Devices
1 int __init ve_spc_init(void __iomem *baseaddr,

2 u32 a15_clusid, int irq)

3 {

4 int ret;

5 info = kzalloc(sizeof(*info), GFP_KERNEL);

6 if (!info) {

7 return -ENOMEM;

8 }

9
10 info->baseaddr = baseaddr;

11 info->a15_clusid = a15_clusid;

12
13 [...]

14
15 sync_cache_w(info);

16 sync_cache_w(&info);

17
18 return 0;

19 }

1 void ve_spc_set_resume_addr(u32 cluster, u32 cpu,

2 u32 addr)

3 {

4 void __iomem *baseaddr;

5
6 if (cluster >= MAX_CLUSTERS)

7 return;

8
9 if (cluster_is_a15(cluster))

10 baseaddr = info->baseaddr +

11 A15_BX_ADDR0 + (cpu << 2);

12 else

13 baseaddr = info->baseaddr +

14 A7_BX_ADDR0 + (cpu << 2);

15
16 writel_relaxed(addr, baseaddr);

17 }

Need to probe device drivers early (before early_initcalls)
Power controllers drivers
CPU memory mapped peripherals (no access through coprocessor - need
DT probing)

Resulting code incompatible with kernel driver model
Code exiled to arch/arm, because it does not belong anywhere else

Power State Coordination Interface

Defines a standard interface for making power management requests across
exception levels/operating systems

Support virtualisation and a communication channel between normal and secure
world

Allow secure firmware to arbitrate power management requests from secure and
non-secure software

Default method for power control in Linux ARM64 kernel

CPU on/off (hotplug, cold-boot)
CPU suspend (suspend to RAM, CPUidle)

Spec available at
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.

den0022b/index.html

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0022b/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0022b/index.html

ARM64 Linux Power Management Requirements

Reliance on PSCI as firmware interface

Trusted firmware PSCI implementation publicly available for FVP
models and Juno
https://github.com/ARM-software/arm-trusted-firmware

Device tree and ACPI bindings to standardize control data and
improve code generality

Take part in ACPI standardization effort http://www.acpi.info
Actively push for Device Tree bindings for power management SW
components

Push back on design quirks and related SW hacks

More collaboration between ARM and ARM partners on HW/SW
interfaces

HW standardization effort must be deployed in ARM vendors designs
SW interfaces adopted by ARM partners Linux kernel developers

https://github.com/ARM-software/arm-trusted-firmware
http://www.acpi.info

Linux Kernel Power Management Subsystems

CPUidle: framework managing idle threads

CPUs enter idle states when idling, with power depth levels that
depend on power management HW

CPU hotplug: removing a CPU from a running system

Not designed for power management, abused as such

Runtime PM

Devices power management

Suspend to RAM: system wide (CPU and devices) sleep states

Triggered from userspace, also used as autosuspend when system is
idle (eg on Android)

Suspend to disk (aka Hibernation): same as Suspend-to-RAM,
system image saved to disk instead of volatile memory

Linux Kernel PM example: CPUidle core

CPU is running idle
Next event (in time) determines
how long the CPU can sleep
CPU woken up by IRQs,
behaves as WFI regardless of
the idle state power depth

Idle state entered through
CPUidle driver enter() function

Prepare the CPU for power
down
Execute the power down
command

1 CPU idle state data

2
3 struct cpuidle_state {

4 char name[CPUIDLE_NAME_LEN];

5 char desc[CPUIDLE_DESC_LEN];

6 unsigned int flags;

7 unsigned int exit_latency; /* in US */

8 int power_usage; /* in mW */

9 unsigned int target_residency; /* in US */

10 bool disabled; /* disabled on all CPUs */

11 /* Idle state enter function */

12 {int (*enter)(struct cpuidle_device *dev,

13 struct cpuidle_driver *drv,

14 int index);

15 ...

16 };

ARM 32-bit CPUidle consolidation issues

Current ARM CPUidle drivers in the kernel cannot be easily
cleaned-up/consolidated

ARM 32-bit SMP CPUidle code was merged separately through
different trees, with no consolidation effort

cpu_suspend() kernel interface was defined, but there are still open
issues that prevent consolidation

Lack of standard power down procedures
Lack of standard idle state entry interface

Multi-Cluster Power Management (MCPM) introduction helped
define a common entry point for idle

It requires the kernel to run in secure world unless security is
overriden in firmware
It relies on early devices initialization in the kernel

ARM 32-bit CPUidle consolidation issues

Current ARM CPUidle drivers in the kernel cannot be easily
cleaned-up/consolidated

ARM 32-bit SMP CPUidle code was merged separately through
different trees, with no consolidation effort

cpu_suspend() kernel interface was defined, but there are still open
issues that prevent consolidation

Lack of standard power down procedures
Lack of standard idle state entry interface

Multi-Cluster Power Management (MCPM) introduction helped
define a common entry point for idle

It requires the kernel to run in secure world unless security is
overriden in firmware
It relies on early devices initialization in the kernel

ARM 32-bit v7 shutdown procedure (1/3)

1 ENTRY(tegra_disable_clean_inv_dcache)

2 stmfd sp!, {r0, r4-r5, r7, r9-r11, lr}

3 dmb @ ensure ordering

4
5 /* Disable the D-cache */

6 mrc p15, 0, r2, c1, c0, 0

7 bic r2, r2, #CR_C

8 mcr p15, 0, r2, c1, c0, 0

9 isb

10
11 /* Flush the D-cache */

12 cmp r0, #TEGRA_FLUSH_CACHE_ALL

13 blne v7_flush_dcache_louis

14 bleq v7_flush_dcache_all

15
16 /* Turn off coherency */

17 exit_smp r4, r5

18
19 ldmfd sp!, {r0, r4-r5, r7, r9-r11, pc}

20 ENDPROC(tegra_disable_clean_inv_dcache)

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/

arch/arm/mach-tegra/sleep.S?id=refs/tags/v3.16

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/arch/arm/mach-tegra/sleep.S?id=refs/tags/v3.16
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/arch/arm/mach-tegra/sleep.S?id=refs/tags/v3.16

ARM 32-bit v7 shutdown procedure (2/3)

1 ENTRY(omap4_finish_suspend)

2 stmfd sp!, {r4-r12, lr}

3 cmp r0, #0x0

4 beq do_WFI @ No lowpower state, jump to WFI

5 [...]

6 skip_secure_l1_clean:

7 bl v7_flush_dcache_all

8
9 mrc p15, 0, r0, c1, c0, 0

10 bic r0, r0, #(1 << 2) @Disable the C bit

11 mcr p15, 0, r0, c1, c0, 0

12 isb

13
14 bl v7_flush_dcache_all

15
16 bl omap4_get_sar_ram_base

17 mov r8, r0

18 ldr r9, [r8, #OMAP_TYPE_OFFSET]

19 cmp r9, #0x1 @ Check for HS device

20 bne scu_gp_set

21 mrc p15, 0, r0, c0, c0, 5 @ Read MPIDR

22 ands r0, r0, #0x0f

23 ldreq r0, [r8, #SCU_OFFSET0]

24 ldrne r0, [r8, #SCU_OFFSET1]

25 mov r1, #0x00

26 stmfd r13!, {r4-r12, r14}

27 ldr r12, =OMAP4_MON_SCU_PWR_INDEX

28 DO_SMC

29 [...]

30 ENDPROC(omap4_finish_suspend)

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/

arch/arm/mach-omap2/sleep44xx.S?id=refs/tags/v3.16

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/arch/arm/mach-omap2/sleep44xx.S?id=refs/tags/v3.16
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/arch/arm/mach-omap2/sleep44xx.S?id=refs/tags/v3.16

ARM 32-bit v7 shutdown procedure (3/3)

1 #define v7_exit_coherency_flush(level) \

2 asm volatile(\

3 "stmfd sp!, {fp, ip} \n\t" \

4 "mrc p15, 0, r0, c1, c0, 0 @ get SCTLR \n\t" \

5 "bic r0, r0, #"__stringify(CR_C)" \n\t" \

6 "mcr p15, 0, r0, c1, c0, 0 @ set SCTLR \n\t" \

7 "isb \n\t" \

8 "bl v7_flush_dcache_"__stringify(level)" \n\t" \

9 "clrex \n\t" \

10 "mrc p15, 0, r0, c1, c0, 1 @ get ACTLR \n\t" \

11 "bic r0, r0, #(1 << 6) @ disable local coherency \n\t" \

12 "mcr p15, 0, r0, c1, c0, 1 @ set ACTLR \n\t" \

13 "isb \n\t" \

14 "dsb \n\t" \

15 "ldmfd sp!, {fp, ip}" \

16 : : : "r0","r1","r2","r3","r4","r5","r6","r7", \

17 "r9","r10","lr","memory")

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/

arch/arm/include/asm/cacheflush.h?id=refs/tags/v3.16

 https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/arch/arm/include/asm/cacheflush.h?id=refs/tags/v3.16
 https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/arch/arm/include/asm/cacheflush.h?id=refs/tags/v3.16

ARM 32-bit CPUidle consolidation issues

Current ARM CPUidle drivers in the kernel cannot be easily
cleaned-up/consolidated

ARM SMP CPUidle code merged separately through different trees,
with no consolidation effort

cpu_suspend() kernel interface was defined, but there are still open
issues that prevent consolidation

Lack of standard power down procedures
Lack of standard idle state entry interface

Multi-Cluster Power Management (MCPM) introduction helped
define a common entry point for idle

It requires the kernel to run in secure world unless security is
overriden in firmware
It relies on early devices initialization in the kernel

ARM 32-bit CPUidle enter examples (1/3)

1 static int armada_370_xp_enter_idle(struct cpuidle_device *dev,

2 struct cpuidle_driver *drv,

3 int index)

4 {

5 int ret;

6 bool deepidle = false;

7 cpu_pm_enter();

8
9 if (drv->states[index].flags & ARMADA_370_XP_FLAG_DEEP_IDLE)

10 deepidle = true;

11
12 ret = armada_370_xp_cpu_suspend(deepidle);

13 if (ret)

14 return ret;

15
16 cpu_pm_exit();

17
18 return index;

19 }

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/

drivers/cpuidle/cpuidle-armada-370-xp.c?id=refs/tags/v3.16

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/drivers/cpuidle/cpuidle-armada-370-xp.c?id=refs/tags/v3.16
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/drivers/cpuidle/cpuidle-armada-370-xp.c?id=refs/tags/v3.16

ARM 32-bit CPUidle enter examples (2/3)
1 static int idle_finisher(unsigned long flags)

2 {

3 exynos_enter_aftr();

4 cpu_do_idle();

5
6 return 1;

7 }

8
9 static int exynos_enter_core0_aftr(struct cpuidle_device *dev,

10 struct cpuidle_driver *drv,

11 int index)

12 {

13 cpu_pm_enter();

14 cpu_suspend(0, idle_finisher);

15 cpu_pm_exit();

16
17 return index;

18 }

19
20 static int exynos_enter_lowpower(struct cpuidle_device *dev,

21 struct cpuidle_driver *drv,

22 int index)

23 {

24 int new_index = index;

25
26 if (num_online_cpus() > 1 || dev->cpu != 0)

27 new_index = drv->safe_state_index;

28
29 if (new_index == 0)

30 return arm_cpuidle_simple_enter(dev, drv, new_index);

31 else

32 return exynos_enter_core0_aftr(dev, drv, new_index);

33 }

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/

drivers/cpuidle/cpuidle-exynos.c?id=refs/tags/v3.16

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/drivers/cpuidle/cpuidle-exynos.c?id=refs/tags/v3.16
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/drivers/cpuidle/cpuidle-exynos.c?id=refs/tags/v3.16

ARM 32-bit CPUidle enter examples (3/3)

1 static int notrace bl_powerdown_finisher(unsigned long arg)

2 {

3 /* MCPM works with HW CPU identifiers */

4 unsigned int mpidr = read_cpuid_mpidr();

5 unsigned int cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);

6 unsigned int cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);

7
8 mcpm_set_entry_vector(cpu, cluster, cpu_resume);

9 [...]

10
11 mcpm_cpu_suspend(0);

12
13 /* return value != 0 means failure */

14 return 1;

15 }

16
17 static int bl_enter_powerdown(struct cpuidle_device *dev,

18 struct cpuidle_driver *drv, int idx)

19 {

20 cpu_pm_enter();

21
22 cpu_suspend(0, bl_powerdown_finisher);

23
24 mcpm_cpu_powered_up();

25
26 cpu_pm_exit();

27
28 return idx;

29 }

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/

drivers/cpuidle/cpuidle-big_little.c?id=refs/tags/v3.16

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/drivers/cpuidle/cpuidle-big_little.c?id=refs/tags/v3.16
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/drivers/cpuidle/cpuidle-big_little.c?id=refs/tags/v3.16

Linux Kernel ARM64 CPU operations

Generic kernel interface for
CPU operations

boot
hotplug
idle

CPU operations represent the
interface through which the
kernel carries out the required
actions on CPUs

Interface hides the actual
method implementation
Hooks initialized at boot
through DT or ACPI

1 struct cpu_operations {

2 const char *name;

3 int (*cpu_init)(struct device_node *,

4 unsigned int);

5 int (*cpu_init_idle)(struct device_node *,

6 unsigned int);

7 int (*cpu_prepare)(unsigned int);

8 int (*cpu_boot)(unsigned int);

9 void (*cpu_postboot)(void);

10 int (*cpu_disable)(unsigned int cpu);

11 void (*cpu_die)(unsigned int cpu);

12 int (*cpu_suspend)(unsigned long);

13 };

ARM64 CPUidle enter

1 static int arm_enter_idle_state(struct cpuidle_device *dev,

2 struct cpuidle_driver *drv, int idx)

3 {

4 int ret;

5
6 if (!idx) {

7 cpu_do_idle();

8 return idx;

9 }

10
11 ret = cpu_pm_enter();

12 if (!ret) {

13 /*

14 * Pass idle state index to cpu_suspend which in turn will

15 * call the CPU ops suspend protocol with idle index as a

16 * parameter.

17 */

18 ret = cpu_suspend(idx);

19
20 cpu_pm_exit();

21 }

22
23 return ret ? -1 : idx;

24 }

http://lists.infradead.org/pipermail/linux-arm-kernel/2014-July/

274249.html

http://lists.infradead.org/pipermail/linux-arm-kernel/2014-July/274249.html
http://lists.infradead.org/pipermail/linux-arm-kernel/2014-July/274249.html

ARM64 CPU Operations: PSCI suspend

1 static int __maybe_unused cpu_psci_cpu_suspend(unsigned long index)

2 {

3 struct psci_power_state *state = __get_cpu_var(psci_power_state);

4 /*

5 * idle state index 0 corresponds to wfi, should never be called

6 * from the cpu_suspend operations

7 */

8 if (WARN_ON_ONCE(!index))

9 return -EINVAL;

10
11 return psci_ops.cpu_suspend(state[index - 1],

12 virt_to_phys(cpu_resume));

13 }

14

http:

//lists.infradead.org/pipermail/linux-arm-kernel/2014-July/274245.html

Suspend operations become a stub that calls into firmware to carry
out power down

Equivalent of mwait in x86 world

http://lists.infradead.org/pipermail/linux-arm-kernel/2014-July/274245.html
http://lists.infradead.org/pipermail/linux-arm-kernel/2014-July/274245.html

Idle States Device Tree Bindings

1 idle-states {

2 entry-method = "arm,psci";

3 CPU_SLEEP_0: cpu-sleep-0 {

4 compatible = "arm,idle-state";

5 arm,psci-suspend-param = <0x0010000>;

6 entry-latency-us = <40>;

7 exit-latency-us = <100>;

8 min-residency-us = <150>;

9 };

10 CLUSTER_SLEEP_0: cluster-sleep-0 {

11 compatible = "arm,idle-state";

12 arm,psci-suspend-param = <0x1010000>;

13 entry-latency-us = <500>;

14 exit-latency-us = <1000>;

15 min-residency-us = <2500>;

16 };

17 };

http://lists.infradead.org/pipermail/linux-arm-kernel/2014-July/

274251.html

Configuration data provided by firmware through well established
bindings

http://lists.infradead.org/pipermail/linux-arm-kernel/2014-July/274251.html
http://lists.infradead.org/pipermail/linux-arm-kernel/2014-July/274251.html

ARM64 Kernel PM: What’s to come

Augment DT idle states bindings with power domains information

Link CPU components (inclusive of caches) and devices to their
respective power domains
Add power domains information to DT idle states

Implement ACPI ARM PM drivers for ACPI 5.1

Spec out ARM system sleep states

PSCI system sleep states management
ACPI and DT system sleep states bindings

Conclusion

ARM 32-bit Linux kernel huge legacy code

HW power control design quirks and related SW workarounds
Lack of power management standards in both HW and SW
Lots of out-of-tree power management ARM vendors code

ARM 64-bit power management

No legacy
ARM 32-bit SW design experience
Upstream momentum for standard interfaces and systems

Standardization required in both HW and SW to prevent same ARM
32-bit mistakes

HW power management recommendation to be shared with ARM
vendors
Foster PSCI standardization deployment
Actively contribute to ACPI specifications and device tree bindings

THANKS !!!

	Introduction
	ARM64 Power Management Framework
	Motivation
	ARM64 kernel PM implementation

