
© 2014 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice.

An Overview of Kernel
Lock Improvements

Davidlohr Bueso & Scott Norton

LinuxCon North America, Chicago

August 2014

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Agenda

1. Why focus on locking?

2. Proof of concept

3. MCS Locks

4. Mutexes

5. Read/write semaphores

6. Read/write [spin]locks

7. Lockref

8. Futexes

2

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Why Focus on Locking?

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Cache Line Contention in Large NUMA Systems

• Lock contention (particularly spinning lock contention) is the primary, and probably
worst, cause of cache line contention

• Cache line contention does have a “cost” associated with NUMA systems, but it is not the
same “cost” that you experience with local vs. remote memory latency in NUMA systems

• However, it’s not only about lock contention

 Cache line contention can also come from sharing cache lines due to poor data structure
layout – two fields in a data structure that are accessed by completely different
processes/threads, but end up in the same cache line

 Worst case: an unrelated and frequently accessed field occupies the same cache line
as a heavily contended lock

 Other atomic operations, such as atomic-add, can also generate cache line contention

 Additionally, the processor’s cache prefetch mechanism may also cause false cache line
contention

4

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Demonstrating Cache Line Contention Effects

• Test program to show the cost of cache line contention in large NUMA systems:

• Bind threads (1 per core) to specified cores. Memory is allocated from a specific node.

• Once the threads are synchronized, perform a tight loop doing spin_lock/spin_unlock
1,000,000 times. This generates an extreme amount of cache line contention. The spinlock
implementation was taken from a Linux 3.0 based kernel.

• Based on the number of threads and the loop iteration count we can calculate the average
number of “operations per second per CPU” when <N> CPUs are involved in the cache line
contention.

• This is not a real-world test. While this is a micro-benchmark, it does show the effects of cache
line contention so that real code can be written with cache line contention in mind.

• Test systems:

• HP DL580 Gen8: 4-socket/ 60-core Intel Xeon E7-4890 v2 2-TB

• HP CS900: 8-socket/120-core Intel Xeon E7-2890 v2 6-TB

• HP CS900: 16-socket/240-core Intel Xeon E7-2890 v2 12-TB

5

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Contention within a Socket:
Increasing Core Count

Performance degrades smoothly as more cores are involved in cache line contention

Execution
Nodes

Memory
node

Sockets
Used

Cores
used

Seconds Ops per
Sec per

Core

% decrease
from 2-core

% decrease
from

previous

Node 1 Node 1 1-socket

2-cores 1.704489 5,866,861 0.0% 0.0%

3-cores 2.783121 3,593,088 38.8% 38.8%

4-cores 4.012157 2,492,425 57.5% 30.6%

5-cores 5.506802 1,815,936 69.0% 27.1%

6-cores 7.110453 1,406,380 76.0% 22.6%

7-cores 7.834159 1,276,461 78.2% 9.2%

8-cores 10.054136 994,616 83.0% 22.1%

9-cores 11.185041 894,051 84.8% 10.1%

10-cores 13.508867 740,255 87.4% 17.2%

11-cores 14.839633 673,871 88.5% 9.0%

12-cores 16.490477 606,411 89.7% 10.0%

13-cores 19.138960 522,494 91.1% 13.8%

14-cores 20.704514 482,986 91.8% 7.6%

6

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Contention across 2-Sockets

• All 30 cores in 2 nodes/sockets participate in the cache line contention:

Execution
Nodes

Memory
node

Sockets
Used

Cores
used Seconds

Ops per
Sec per

Core

% decrease
from

1-socket

Node 0 Node 1 1-socket 15-cores 2.107396 474,519 0.0%

Nodes 0-1

Node 1 2-socket 30-cores

14.450938 69,200 85.4%

Nodes 1-2 14.897306 67,126 86.0%

Nodes 2-3 21.742537 45,993 90.4%

• There are two interesting points here:

1) There is a huge drop in performance when going from 15-cores on1-socket to
30-cores on 2-sockets

2) There is a smaller drop in performance when the lock’s memory location is completely
remote from the sockets involved in cache line contention (nodes 1-2 vs. nodes 2-3)

7

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Contention across 2-Sockets:
Increasing Core Count

• We can see that the huge drop in performance occurs once we add a single core
from the second socket.

• This is due to the need to go through QPI to handle the cache-to-cache traffic to
resolve the cache line contention.

• This is a significant drop in performance when going through QPI.

Execution
Nodes

Memory
node

Sockets
Used

Cores
used Seconds

Ops per
Sec per

Core

% decrease
from 2-core

% decrease
from

previous

Node 0 Node 1 1-socket

13-cores 1.649242 606,339 92.7% 9.1%

14-cores 1.905878 524,693 93.7% 13.5%

15-cores 1.649242 482,435 94.2% 8.1%

Nodes 0-1 Node 1 2-sockets

16-cores 1.905878 129,309 98.4% 73.2%

17-cores 8.348480 119,782 98.6% 7.4%

18-cores 8.264046 121,006 98.5% -1.0%

30-cores 15.146260 66,023 99.2% 8.5%

• Add one core at a time, filling node/socket-0 first, then filling node/socket-1:

8

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Contention across 2-Sockets:
Round-Robin vs. Fill-First
• Contention measured across 2, 8, and 14 cores

• Cores spread among 2-sockets (round-robin) vs. all cores in one socket (fill-first):

Execution
Nodes

Memory
Node

Sockets
used

Cores per
Socket
used

Cores
used

Seconds Ops per
Sec per

Core

Node 1 Node 1 1-socket FF 2-cores 2-cores 0.120395 8,305,993

Node 0-1

Node 1 2-sockets RR 1-core 2-cores

0.314462 3,180,034

Node 1-2 0.305783 3,270,293

Node 2-3 0.453627 2,204,454

Node 1 Node 1 1-socket FF 8-cores 8-cores 1.018527 981,810

Node 0-1

Node 1 2-sockets RR 4-cores 8-cores

3.351590 298,366

Node 1-2 3.390266 294,962

Node 2-3 5.354243 186,768

Node 1 Node 1 1-socket FF 14-cores 14-cores 2.067889 483,585

Node 0-1

Node 1 2-sockets RR 7-cores 14-cores

6.214167 160,923

Node 1-2 6.275140 159,359

Node 2-3 9.471300 105,582

1) Numa effect is visible
when memory is remote

2) Best performance when all
cores are in one socket

9

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Contention across 4-Sockets:
Round-Robin vs. Fill-First

• Contention measured across 4, 8, and 12 cores

• Cores spread (round-robin) among 4-sockets vs. all cores in one socket (fill-first)

Execution
Nodes

Memory
Node

Sockets
used

Cores per
Socket
used

Cores
used

Seconds Ops per
Sec per

Core

Node 1 Node 1 1-socket FF 4-cores 4-cores 0.396550 2,521,750

Node 0-3 Node 1 4-sockets RR 1-core 4-cores 1.491732 670,362

Node 1 Node 1 1-socket FF 8-cores 8-cores 0.941517 1,062,116

Node 0-3 Node 1 4-sockets RR 2-cores 8-cores 5.421381 184,455

Node 1 Node 1 1-socket FF 12-cores 12-cores 1.794806 557,163

Node 0-3 Node 1 4-sockets RR 3-cores 12-cores 8.937035 111,894

Node 0-3 Node 1 4-sockets FF 15-cores 60-cores 49.786041 20,086

• Cache line contention is clearly better when all the contention is contained within a single socket.

• For the same core count, performance degrades as more sockets are involved in the contention

10

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Contention across 8-Sockets:
Round-Robin vs. Fill-First

• Contention measured across 8, 16 and 24 cores

• Cores spread (round-robin) among 8-sockets vs. all cores in two sockets (fill-first):

Execution
Nodes

Memory
Node

Sockets
used

Cores per
Socket
used

Cores
used

Seconds Ops per
Sec per

Core

Node 1 Node 1 1-socket FF 8-cores 8-cores 1.185326 843,650

Node 0-7 Node 1 8-sockets RR 1-core 8-cores 10.609325 94,257

Node 0-1 Node 1 2-sockets FF 16-cores 16-cores 8.886286 112,533

Node 0-7 Node 1 8-sockets RR 2-cores 16-cores 22.296164 44,851

Node 0-1 Node 1 2-sockets FF 24-cores 24-cores 12.991910 76,626

Node 0-7 Node 1 8-sockets RR 3-cores 24-cores 36.197777 27,626

Node 0-7 Node 1 8-sockets FF 15-cores 120-cores 172.782623 5,788

• Cache line contention is clearly better when all the contention is contained within as
few sockets as possible.

11

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Contention across 16-Sockets:
Round-Robin vs. Fill-First

• Contention measured across 16, 32 and 64 cores

• Cores spread (round-robin) among 16-sockets vs. all cores in 1/2/4 sockets (fill-first):

Execution
Nodes

Memory
Node

Sockets used Cores per
Socket
used

Cores
used

Seconds Ops per
Sec per

Core

Node 1 Node 1 1-socket FF 15-cores 15-cores 2.21096 452,292

Node 0-15 Node 1 16-sockets RR 1-core 16-cores 22.904097 43,660

Node 0-1 Node 1 2-sockets FF 15-cores 30-cores 15.706788 63,667

Node 0-15 Node 1 16-sockets RR 2-cores 32-cores 53.217117 18,791

Node 0-3 Node 1 4-sockets FF 15-cores 60-cores 74.909485 13,349

Node 0-15 Node 1 16-sockets RR 4-cores 64-cores 109.447632 9,137

Node 0-15 Node 1 16-sockets RR 15-cores 240-cores 410.881287 2,434

• Cache line contention is clearly better when all the contention is contained within as
few sockets as possible.

12

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

• On a 4-socket/60-core system you have a 25% chance that any two random cores
participating in the same cache line contention are on the same socket

• On an 8-socket/120-core system this is reduced to a 12.5% chance

• With a 16-socket/240-core system you have only a 6.25% chance

Execution
Nodes

Memory
Node

Sockets used Cores per
Socket
used

Cores
used

Seconds Ops per Sec
per Core

Node 1 Node 1 1-socket FF 4-cores 4-cores 0.396550 2,521,750

Node 0-3 Node 1 4-sockets RR 1-core 4-cores 1.491732 670,362

Node 1 Node 1 1-sockets FF 8-cores 8-cores 1.185326 843,650

Node 0-7 Node 1 8-sockets RR 1-cores 8-cores 10.609325 94,257

Node 1 Node 1 1-socket FF 15-cores 15-cores 2.21096 452,292

Node 0-15 Node 1 16-sockets RR 1-core 16-cores 22.904097 43,660

Inter- vs Intra- Cache Line Contention Probability

13

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Why do we care so much?

• Many applications scale based on the number of CPUs available. For example, one
or two worker threads per CPU.

• However, many applications today have been tuned for 4-socket/40-core and 8-
socket/80-core Westmere platforms.

• Going from 40- or 80-cores to 240-cores (16-sockets) is a major jump.

• Scaling based only on the number of CPUs is likely to introduce significant lock and
cache line contention inside the Linux kernel.

• As seen in the previous slides, the impact of cache line contention gets significantly
worse as more sockets and cores are added into the system – this is a major concern
when dealing with 8- and 16-socket platforms.

• This has led us to pursue minimizing cache line contention within Linux kernel locking
primitives.

14

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Proof of Concept

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

The AIM7 fserver workload* scales poorly on 8s/80core NUMA platform with a 2.6 based kernel

* The workload was run with ramfs.

Background

16

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

From the perf -g output, we find most of the CPU cycles are spent in file_move() and file_kill().

40 Users (4000 jobs)

+ 9.40% reaim reaim [.] add_int

+ 6.07% reaim libc-2.12.so [.] strncat
…..
- 1.68% reaim [kernel.kallsyms] [k] _spin_lock

- _spin_lock

+ 50.36% lookup_mnt

+ 7.45% __d_lookup

+ 6.71% file_move

+ 5.16% file_kill

+ 2.46% handle_pte_fault

Proportion of file_move() = 1.68% * 6.71% = 0.11%

Proportion of file_kill() = 1.68% * 5.16% = 0.09 %

Proportion of file_move() + file+kill() = 0.20%

400 users (40,000 jobs)

- 79.53% reaim [kernel.kallsyms] [k] _spin_lock

- _spin_lock

+ 34.28% file_move

+ 34.20% file_kill

+ 19.94% lookup_mnt

+ 8.13% reaim [kernel.kallsyms] [k] mutex_spin_on_owner

+ 0.86% reaim [kernel.kallsyms] [k] _spin_lock_irqsave

+ 0.63% reaim reaim [.] add_long

Proportion of file_move() = 79.53% * 34.28% = 27.26%

Proportion of file_kill() = 79.53% * 34.20% = 27.20%

Proportion of file_move() + file+kill() = 54.46%

Analysis (1-2)

This is significant spinlock contention!

17

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

We use the ORC tool to monitor the coherency controller results

(ORC is a platform dependent tool from HP that reads performance counters in the XNC node controllers)

Coherency Controller Transactions Sent to Fabric Link (PRETRY number)

Socket Agent 10users 40users 400users

0 0 17,341 36,782 399,670,585

0 8 36,905 45,116 294,481,463

1 0 0 0 49,639

1 8 0 0 25,720

2 0 0 0 1,889

2 8 0 0 1,914

3 0 0 0 3,020

3 8 0 0 3,025

4 1 45 122 1,237,589

4 9 0 110 1,224,815

5 1 0 0 26,922

5 9 0 0 26,914

6 1 0 0 2,753

6 9 0 0 2,854

7 1 0 0 6,971

7 9 0 0 6,897

 PRETRY indicates the associated read needs to be re-
issued.

 We can see that when users increase, PRETRY on
socket 0 increases rapidly.

 There is serious cache line contention on socket 0 with
400 users. Many jobs are waiting for the memory
location on Socket 0 which contains the spinlock.

 PRETRY number on socket 0:
400 users = 400M + 294M = 694M

Analysis (2-2)

18

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

• Code snippet from the 2.6 based kernel for file_move() and file_kill():

extern spinlock_t files_lock;

#define file_list_lock() spin_lock(&files_lock);

#define file_list_unlock() spin_unlock(&files_lock);

void file_move(struct file *file,

struct list_head *list)

{

if (!list) return;

file_list_lock();

list_move(&file->f_u.fu_list, list);

file_list_unlock();

}

void file_kill(struct file *file)

{

if (!list_empty(&file->f_u.fu_list)) {

file_list_lock();

list_del_init(&file->f_u.fu_list);

file_list_unlock();

}

}

Removing Cache Line Contention

19

• Contention on this global spinlock is the cause of all the cache line contention

• We developed a prototype MCS/Queued spinlock to see its effect on cache line traffic

• MCS/Queued locks are NUMA aware and each locker spins on local memory rather than the lock word

• Implementation is available in the back-up slides

• No efforts were made to make this a finer grained lock

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Comparing the performance of the new kernel (blue line) vs. the original kernel (red line)

Prototype Benchmark Results

2.4x improvement in throughput with the MCS/Queued spinlock prototype!
20

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

• The proportion of time for the functions file_move() and file_kill() is now small in the 400
users case when using an MCS/Queued spinlock (dropped from 54.46% to 2.38%)

• The functions lookup_mnt() and __mutex_lock_slowpath() now take most of the time.

400 users(40000 jobs)

44.71% reaim [kernel.kallsyms] [k] _spin_lock

-60.94%-- lookup_mnt

….

22.13% reaim [kernel.kallsyms] [k] mutex_spin_on_owner

-96.16%-- __mutex_lock_slowpath

……

1.19% reaim [kernel.kallsyms] [k] file_kill

1.19% reaim [kernel.kallsyms] [k] file_move

Proportion of lookup_mnt() = 27.2%

Proportion of __mutex_lock_slowpath() = 21.3%

Proportion of file_move() + file+kill() 2.38%

Prototype Analysis (1-2)

perf –g output of the kernel with MCS/Queued spinlock prototype:

21

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Coherency controller results of the kernel with the MCS/Queued spinlock

Coherency Controller Transactions Sent to Fabric Link (PRETRY number)

Socket Agent 10users 40users 400users

0 0 18,216 24,560 83,720,570

0 8 37,307 42,307 43,151,386

1 0 0 0 0

1 8 0 0 0

2 0 0 0 0

2 8 0 0 0

3 0 0 0 0

3 8 0 0 0

4 1 52 222 16,786

4 9 28 219 10,068

5 1 0 0 0

5 9 0 0 0

6 1 0 0 0

6 9 0 0 0

7 1 0 0 0

7 9 0 0 0

 We can see that as users increase, PRETRY in socket 0
also increases – but it is significantly lower than the
kernel without the MCS/Queued lock.

 The PRETRY number for socket 0:
400 users = 84M + 43M = 127M.

 This value is about 1/5 of the original kernel (694M).

 This shows the MCS/Queued spinlock algorithm reduces
the PRETRY traffic that occurs in file_move() and file_kill()
significantly even though we still have the same
contention on the spinlock.

Prototype Analysis (2-2)

22

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

• The MCS/Queued spinlock improved the throughput of large systems just by
minimizing the inter-socket cache line traffic generated by the locking algorithm.

• The MCS/Queued spinlock did not reduce the amount of contention on the actual
lock. We have the same number of spinners contending for the lock. No code
changes were made to reduce lock contention.

• However, the benchmark throughput improved from ~160,000 to ~390,000 jobs
per minute due to the reduced inter-socket cache-to-cache traffic.

• System time spent spinning on the lock dropped from 54% to 2%.

• Lock algorithms can play a huge factor in the performance of large-scale systems

• The impact of heavy lock contention on a 240-core system is much more severe than
the impact of heavy lock contention on a 40-core system

• This is not a substitute for reducing lock contention… Reducing lock contention is
still the best solution, but attention to lock algorithms that deal with contention *is*
extremely important and can yield significant improvements.

Proof of Concept - Conclusions

23

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

MCS Locks

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

MCS Locks in the Kernel

• A new locking primitive inside Linux

− Currently only used inside other locking primitives and not general usage throughout the kernel

• Each locker spins on a local variable while waiting for the lock rather than spinning on
the lock itself.

• Eliminates much of the cache-line bouncing experienced by simpler locks, especially in
the contended case when simple CAS (Compare-and-Swap) calls fail.

• Fair, passing the lock to each locker in the order that the locker arrived.

• Specialized cancelable MCS locking.

• Applied internally to mutexes and rwsems.

− Specialized cancelable MCS locking.

− Failed attempts have been made for regular ticket spinlocks – but it cannot fit inside 4-bytes!

25

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

MCS Locks

struct mcs_spinlock {

struct mcs_spinlock *next;

int locked;

};

void mcs_spin_lock(struct mcs_spinlock **lock,

struct mcs_spinlock *node);

void mcs_spin_unlock(struct mcs_spinlock **lock,

struct mcs_spinlock *node);

• Little more complicated than a regular
spinlock.

• Pointer in the "main" lock is the tail of
the queue of waiting CPUs.

26

Empty lock

CAS cpu1 mcs_spinlock with lock, acquire it.

CAS cpu2 mcs_spinlock with lock, prev != NULL, lock taken.

Repeat previous operation: CAS cpu2 with CPU1’s mcs_spinlock

CPU1 done with the lock.

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Cancellable MCS Locks

• The cancellable MCS lock is a specially tailored lock for MCS: when needing to reschedule,
we need to abort the spinning in order to block.

• The most popular use of the cancellable MCS lock is embedded into the optimistic spinning
path of both mutexes and rw-semaphores.

27

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Mutexes

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Mutex Overview

• Allows a single thread to enter a critical section at a time.

− Introduced as an optimized alternative to regular semaphores.

• Sleeping lock – beneficial for long hold times (larger critical regions).

• More beneficial to use a mutex if the critical section is long.

• When taking the lock, there are three possible paths that can be taken, depending on the
state of the lock at that point.

1. Fast path:

− Attempt to acquire the lock by atomically decrementing the count variable. If previous mutex
count was 1, return, otherwise try the slow path. Architecture specific.

2. Mid path (optimistic spinning):

− When the lock is contended, instead of immediately adding the task to the wait-queue and
blocking, busy-wait as a regular spinlock.

3. Slow path:

− Take the wait_lock spinlock, add the task to the list and block until the lock is available.

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Mutex Lock Improvements

• Reduce the number of atomic operations

− Read values first - only use xchg/cmpxchg if it might be successful. Also known as
compare-compare-and-swap.

− Reduces cache line contention

− For example:

• Orig: if (atomic_cmpxchg(&lock->count, 1, 0) == 1)

• New: if ((atomic_read(&lock->count) == 1) && (atomic_cmpxchg(&lock->count, 1, 0) == 1))

• Slow path optimizations

− Shorten critical region.

− Optimize wait_list handling, etc.

• Add the MCS lock inside of a Mutex

− Fixes fairness and cache line contention problems with optimistic spinning

• The mutex is granted in the order of which it arrives (similar to ticket spinlocks).

• Spin on our own cache line.

30

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Mutex Lock Performance Improvements

• The previous changes were back-ported to a 3.0 based kernel

• Performance measurements were done with a popular Java based workload (higher
number of operations is better)

• System used: HP ConvergedSystem 900 for SAP HANA

• 16-sockets, 240-cores, 480-threads, 12-TB memory

31

72089

137268

250891

0

50000

100000

150000

200000

250000

300000

1

N
U

M
B
E
R
 O

F
 O

P
E
R
A

T
IO

N
S

Baseline prior to mutex changes

3 non-MCS mutex changes (90% over baseline)

All mutex changes (248% over baseline,

83% over non-MCS mutex)

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Read / Write Semaphores

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Read/Write Semaphore Overview

• Read/write semaphores allow the lock to be shared among readers or exclusively owned
by one writer at a time.

− Two kinds of implementations: faster xadd, slower spinlock.

− Sleeping lock - beneficial for long hold times (larger critical regions).

− Fairness towards writers.

• Lock acquisition handling is similar to mutexes: fast path, mid path (with optimistic
spinning), and slow path.

33

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Read/Write Semaphore Problems

• Many workloads exposed that mutexes could out-perform writer semaphores.

− Semantically writer semaphore are identical to mutexes.

− Simply replacing the semaphore with a mutex would return performance.

− Users had to consider this performance penalty when choosing what type of primitive to use.

• Two issues cause this problem:

1. Writer starvation

2. Lack of optimistic spinning on lock acquisition

34

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Writer Lock Stealing

• Read/write semaphores suffer from a strict, FIFO sequential write-ownership of rwsems.

• Mutexes do not suffer from this as they handle checks for waiters differently.

• To resolve this issue Writer Lock Stealing was implemented in read/write lock semaphores:

− While task X is in the process of acquiring a lock, process Y can atomically acquire the lock and
essentially steal it.

− Results in better CPU usage (less idle time) and fewer context switches.

35

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Optimistic Spinning

• Read/write semaphores would try to acquire the lock once. If not available the locker
would immediately block waiting for the lock

− The overhead of blocking caused significant performance problems.

• When the semaphore is contended, instead of immediately adding the locker to the wait
queue and blocking, we now busy-wait for the semaphore (similar to a regular spinlock.

− If the current lock holder is not running or needs to be rescheduled then block waiting for the
semaphore.

− Based on what mutexes have been doing since early 2009. With roots in Real-Time.

− Adds the notion of a hybrid locking type.

− Rwsems can still be used in sleeping context.

• Particularly useful locks that have short or medium hold times.

36

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Caveats to Optimistic Spinning with rwsems

1. The ‘struct rw_semaphore’ data structure is now the largest lock in the kernel.

• Larger structure sizes mean more CPU cache and memory footprint.

• Dave Chinner reported that it increased the size of xfs_inode by 4%.

• “That's enough to go from having a well balanced workload to not being able to fit the
working set of inodes in memory.”

2. When workloads use both lock readers and writers, there is a chance that optimistic
spinning can make writers spin excessively for the lack of ownership.

• When readers acquire the lock there is no concept of ownership

• Consequently writers may spin excessively as there is no owner to optimistically spin on

• This is a major difference between read/write semaphores and mutexes

37

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

AIM7 Benchmark Results (1-2)

38

~ 1.85x improvement in throughput (JPM)!

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

AIM7 Benchmark Results (2-2)

39

~ 1.7x improvement in throughput (JPM)!

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Read / Write Spinlocks

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Read/Write Spinlock Overview and Problems

• Overview:

− Reader/writer variant of a regular spinlock.

− Known to perform significantly slower than regular spinlocks.

• Problems:

− Unfair: readers can starve writers – new readers may acquire the lock even when writers are
waiting.

− Unfair on a NUMA machine: Better chance of acquiring if the lock is on the local memory node.

41

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Queue-based read/write lock implementation

• Uses spinlock as a waitqueue, thus relying on its ticket fairness.

• Does not enlarge rw locks (fits in same 8-bytes as the regular rwlock_t)

• Reader and writer counters into a single integer (4-bytes) + waitqueue (4-bytes)

• While it solves the fairness problem, there are really no performance gains yet.

• We need a way of having MCS-like spinlocks without increasing its size.

• Queued spinlocks:

• Not yet in the kernel.

• An alternative to the ticket spinlock.

• Improve scenarios under high lock contention.

• Perform better than ticket spinlocks in the uncontended case.

• When unlocking: read-modify-write (add) vs simple write: from ~14.1ns down to ~8.8ns.

• Smaller systems can see an improvement.

42

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Performance Results

• Gains in disk AIM7 workload

43

Changes % increase

ramdisk 95%

ext4 116%

Today – without qspinlock

26.19% reaim [kernel.kallsyms] [k] _raw_spin_lock

--- _raw_spin_lock

|--47.28%-- evict

|--46.87%-- inode_sb_list_add

|--1.24%-- xlog_cil_insert_items

|--0.68%-- __remove_inode_hash

|--0.67%-- inode_wait_for_writeback

[...]

With qspinlock

2.40% reaim [kernel.kallsyms] [k] queue_spin_lock_slowpath

|--88.31%-- _raw_spin_lock

| |--36.02%-- inode_sb_list_add

| |--35.09%-- evict

| |--16.89%-- xlog_cil_insert_items

| |--6.30%-- try_to_wake_up

| |--2.20%-- _xfs_buf_find

| |--0.75%-- __remove_inode_hash

| |--0.72%-- __mutex_lock_slowpath

| |--0.53%-- load_balance

|--6.02%-- _raw_spin_lock_irqsave

| |--74.75%-- down_trylock

[...]

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Lockref

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Reference counting in the Kernel

• Normally used to track the lifecycle of data structures.

− A reference count of zero means the structure is unused and is free to be released

− A positive reference count indicates how many tasks are actively referencing this structure

− This is usually handled in put() and get() calls

− atomic_t and struct kref are some techniques for reference counters

• When embedded into a data structure, it is not uncommon to have to acquire a lock
(spinlock) just to increment or decrement the reference count variable.

• Under heavy load, this lock can become quite contended.

− What about converting the variable to an atomic type and avoid taking the lock?

45

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Lockref

• Generic mechanism to atomically update a reference count that is protected by a spinlock
without actually acquiring the spinlock itself.

• The lockref patch introduced a new mechanism for a lockless update of a spinlock
protected reference count.

• Bundle a 4-byte spinlock and a 4-byte reference count into a single 8-byte word that can be
updated atomically while no one is holding the lock.

• The VFS layer makes heavy use of lockref for dentry operations.

− Workloads that create lots of fs activity can be bottlenecked by the spinlock contention on the
dentry reference count update.

− The lockref patch resolves this contention by doing the update without taking the lock.

46

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Lockref

struct lockref {

spinlock_t lock;

unsigned int count;

};

void lockref_get(struct lockref *lockref);

int lockref_get_not_zero(struct lockref *lockref);

int lockref_put_or_lock(struct lockref *lockref);

1. Fast path:

− Atomically check that the lock is not taken
so that lockless updates can never
happen while someone else holds the
spinlock.

− Do the reference count update using a
CAS loop. Architectures must define
ARCH_USE_CMPXCHG_LOCKREF

− Semantically identical to doing the
reference count update protected by the
lock

2. Slow path:

− Take the spinlock, then normally inc/dec
the counter the traditional way.

47

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Comparing a pre (blue line) and post (red line) lockref vanilla 3.11 kernel

Benchmark Results (1-2)

~ 8x improvement in throughput (JPM)!

48

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Benchmark Results (2-2)

The following before/after perf output shows the reduced time spent spinning on the lock:

49

Prior to the lockref patches

- 83.74% reaim [kernel.kallsyms] [k] _raw_spin_lock

- _raw_spin_lock

- 49.96% dget_parent

- __fsnotify_parent

+ 20.16% __fput

+ 20.10% security_file_permission

+ 20.00% fsnotify_access

+ 19.92% do_sys_open

+ 19.82% security_file_open

- 49.68% dput

- 99.97% __fsnotify_parent

+ 20.18% security_file_permission

+ 20.02% __fput

+ 20.02% fsnotify_access

+ 20.00% do_sys_open

+ 19.78% security_file_open

- 2.24% reaim [kernel.kallsyms] [k] update_cfs_rq_blocked_load

- 0.39% reaim [kernel.kallsyms] [k] intel_pmu_disable_all

After applying the lockref patches

- 13.84% reaim [kernel.kallsyms] [k] _raw_spin_lock_irqsave

- _raw_spin_lock_irqsave

+ 49.07% tty_ldisc_try

+ 48.80% tty_ldisc_deref

- 12.97% reaim [kernel.kallsyms] [k] lg_local_lock

- lg_local_lock

+ 72.31% mntput_no_expire

+ 20.28% path_init

+ 4.55% sys_getcwd

+ 2.71% d_path

- 5.34% reaim [kernel.kallsyms] [k] _raw_spin_lock

- _raw_spin_lock

+ 41.54% d_path

+ 39.37% sys_getcwd

+ 4.10% prepend_path

+ 1.86% __rcu_process_callbacks

+ 1.30% do_anonymous_page

+ 0.95% sem_lock

+ 0.95% process_backlog

+ 0.70% enqueue_to_backlog

+ 0.64% unix_stream_sendmsg

+ 0.64% unix_dgram_sendmsg

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Futexes

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Futex Bottlenecks

• Impacts all types of futexes.

• Futexes suffer from its original design: a unique, shared hash table.

− Each bucket in a priority list (FIFO), serialized by a spinlock (hb->lock).

− For NUMA systems, all memory for the table is allocated on a single node.

− Very small size (256 hash buckets) for today’s standards. More collisions.

− Both problems hurt scalability, considerably.

• hb->lock hold times can become quite large:

− Task, mm/inode refcounting.

− Wake up tasks.

− Plist handling.

51

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Larger, NUMA-aware Hash Table (1-2)

• 256 hash buckets per CPU

− 256 * nCPUs cache line aligned hash buckets

− Less collisions and more spinlocks leading to more parallel futex call handling.

• Distribute the table among NUMA nodes instead of a single one.

• The perfect hash size will of course have one to one hb:futex ratio.

• Performance measured by stressing the internal futex hashing logic.

• As expected, the benefits become more evident as more futexes are used. On
a 1Tb, 80-core, 8-socket x86-64 (Westmere):
− 1024 * 32 futexes -> ~78% throughput increase.

− 1024 * 512 futexes -> ~800% throughput increase.

52

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

NUMA-aware Larger Hash Table (2-2)

0

200000

400000

600000

800000

1000000

1200000

1400000

512 256 128 80 64 32

o
p

s/
se

c

threads

Futex Hash Table Scaling

baseline

aligned buckets

large numa-aware table

both

53

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Lockless Waitqueue Size

• A common misuse of futexes is to make FUTEX_WAKE calls when there are
no waiters.

• In FUTEX_WAKE, there’s no reason to take the hb->lock if we already know
the list is empty and thus one to wake up.

• Use an independent atomic counter to keep track of the list size.

• This can drastically reduce contention on the hash bucket spinlock.

54

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Futex Performance Improvements

• The following before/after perf output from a customer database workload on a large
16-socket / 240-core system shows the reduced time spent spinning on hb->lock:

55

Prior to the futex patches

43.71% 762296 xxx [kernel.kallsyms] [k] _raw_spin_lock

--- _raw_spin_lock

|

|--53.74%-- futex_wake

| do_futex

| sys_futex

| system_call_fastpath

| |

| |--99.40%-- 0x7fe7d44a4c05

| | zzz

|--45.90%-- futex_wait_setup

| futex_wait

| do_futex

| sys_futex

| system_call_fastpath

| 0x7fe7ba315789

| syscall

...

After applying the futex patches

0.10% 49 xxx [kernel.kallsyms] [k] _raw_spin_lock

--- _raw_spin_lock

|

|--76.06%-- futex_wait_setup

| futex_wait

| do_futex

| sys_futex

| system_call_fastpath

| |

| |--99.90%-- 0x7f3165e63789

| | syscall|

...

|--6.27%-- futex_wake

| do_futex

| sys_futex

| system_call_fastpath

| |

| |--54.56%-- 0x7f317fff2c05

...

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Future Work

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Possible Future Work

• Internal API for wait-wound, real-time and regular mutexes.
− All should make use of optimistic spinning functionality.

− Better, clearer and more maintainable code.

• Queued spinlocks.
− Based on the MCS locks but the spinlock still fits in a 32-bit word.

• Spinning futexes.
− Allows userspace to overcome the preemption problem with building spinlocks.

− Avoid blocking calls and reduce scheduling overhead by spinning for a short time.

57

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Acknowledgements

• HP Linux Kernel Performance team contributing this work:

− Waiman Long

− Jason Low

− Davidlohr Bueso

− Scott Norton

− Aswin Chandramouleeswaran

• Linux kernel community
− Peter Zijlstra

− Linus Torvalds

− Ingo Molnar

− Thomas Gleixner

− Paul McKenney

− and many others…

58

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Thank you

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Back-up Slides

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

General Locking (1-2)

• Locks available to kernel hackers:

1. Spinning: spinlock, rwlock.

2. Sleeping: rwsem, semaphore, mutex.

3. Others: RCU, etc.

• What can contribute to scaling problems when using locks?
• Length of the critical region

− Reducing the length of the critical section can certainly help alleviating lock contention.

− Choice of locking type can be paramount.

• Lock granularity

− Fine-grained locks are usually more scalable than coarse-grained locks. It also can shorten the critical region,
allowing fewer CPUs to contend for the lock at any given time.

• Cache line bouncing

− Tasks spinning on a lock will try to fetch the lock cache line repeatedly. If the lock-protected data structure is
in the same cache line, it can significantly slow down the progress of the lock holder leading to a much
longer lock hold time.

61

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

General Locking (2-2)

• Other considerations
• Lock overhead

− The extra resources for using locks, like the memory space allocated for locks, the CPU time to initialize and
destroy locks, and the time for acquiring or releasing locks. The more locks a program uses, the more
overhead associated with the usage.

− This overhead, for instance with space, can cause a workload's working set to significantly increase, having
to go further down in the memory hierarchy and therefore impacting performance.

• Read:write ratio

− Ration between the number of read-only critical regions to the number of regions where the data in question
is modified. Read locks can, of course, have multiple tasks acquire the lock simultaneously.

62

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

We developed a prototype MCS/Queued lock to see the effect on cache line traffic

(MCS/Queued locks are NUMA aware and each locker spins on local memory rather than the lock word)

MCS/Queued Lock Prototype (1-2)

typedef struct _local_qnode {

volatile bool waiting;

volatile struct _local_qnode *volatile next;

} local_qnode;

static inline void

mcsfile_lock_acquire(mcsglobal_qlock *global,

local_qnode_ptr me)

{

local_qnode_ptr pred;

me->next = NULL;

pred = xchg(global, me);

if (pred == NULL)

return;

me->waiting = true;

pred->next = me;

while (me->waiting); /*spin on local mem*/

}

static inline void

mcsfile_lock_release(mcsglobal_qlock *global,

local_qnode_ptr me)

{

local_qnode_ptr succ;

if (!(succ = me->next)) {

if (cmpxchg(global, me, NULL) == me) return;

do {

succ = me->next;

} while (!succ); /* wait for succ ready */

}

succ->waiting = false;

}

63

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Replacing the files_lock spinlock with the prototype mcsfiles_lock MCS/Queued spinlock

extern mcsglobal_qlock mcsfiles_lock;

#define file_list_lock(x) mcsfile_lock_acquire(&mcsfiles_lock, &x);

#define file_list_unlock(x) mcsfile_lock_release(&mcsfiles_lock, &x);

void file_kill(struct file *file)

{

volatile local_qnode lq;

if (!list_empty(&file->f_u.fu_list)) {

file_list_lock(lq);

list_del_init(&file->f_u.fu_list);

file_list_unlock(lq);

}

}

void file_move(struct file *file,

struct list_head *list)

{

volatile local_qnode lq;

if (!list)

return;

file_list_lock(lq);

list_move(&file->f_u.fu_list, list);

file_list_unlock(lq);

}

MCS/Queued Lock Prototype (2-2)

64

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

AIM7 Benchmark Suite

• Traditional UNIX system-level benchmark (written in C).

• Multiple forks, each of which concurrently executes a common, randomly-ordered
set of subtests called jobs.

• Each of the over fifty kind of jobs exercises a particular facet of system functionality
• Disk IO operations, process creation, virtual memory operations, pipe I/O, and compute-bound arithmetic loops.

• AIM7 includes disk subtests for sequential reads, sequential writes, random reads, random writes, and random
mixed reads and writes.

• An AIM7 run consists of a series of subruns with the number of tasks, N, being
increased after the end of each subrun.

• Each subrun continues until each task completes the common set of jobs. The
performance metric, "Jobs completed per minute", is reported for each subrun.

• The result of the entire AIM7 run is a table showing the performance metric versus
the number of tasks, N.

• Reference: “Filesystem Performance and Scalability in Linux 2.4.17”, 2002.
65

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

perf-bench futex (1-2)

• To measure some of the changes done by the futex hastable patchset, a futex
set of microbenchmarks are added to perf-bench:
− perf bench futex [<operation> <all>]

• Measures latency of different operations:
− Futex hash

− Futex wake

− Futex requeue/wait

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

perf-bench futex (2-2)
$ perf bench futex wake

Running 'futex/wake' benchmark:

Run summary [PID 4028]: blocking on 4 threads (at futex 0x7e20f4), waking up 1 at a time.

[Run 1]: Wokeup 4 of 4 threads in 0.0280 ms

[Run 2]: Wokeup 4 of 4 threads in 0.0880 ms

[Run 3]: Wokeup 4 of 4 threads in 0.0920 ms

…

[Run 9]: Wokeup 4 of 4 threads in 0.0990 ms

[Run 10]: Wokeup 4 of 4 threads in 0.0260 ms

Wokeup 4 of 4 threads in 0.0703 ms (+-14.22%)

$ perf bench futex hash

Running 'futex/hash' benchmark:

Run summary [PID 4069]: 4 threads, each operating on 1024 futexes for 10 secs.

[thread 0] futexes: 0x1982700 ... 0x19836fc [3507916 ops/sec]

[thread 1] futexes: 0x1983920 ... 0x198491c [3651174 ops/sec]

[thread 2] futexes: 0x1984ab0 ... 0x1985aac [3557171 ops/sec]

[thread 3] futexes: 0x1985c40 ... 0x1986c3c [3597926 ops/sec]

Averaged 3578546 operations/sec (+- 0.85%), total secs = 10

