

Copyright (C) 2016, ilbers GmbH

Isar
Build Debian-Based Products with BitBake

Baurzhan Ismagulov

Embedded Linux Conference Europe
Oct 11 - 13, 2016
Berlin, Germany

Copyright (C) 2016, ilbers GmbH 2

Contents

● About Us

● Motivation

● Existing Software

● What is Isar

● How It Works

● Using Isar

● Some Other Approaches

● Next Steps

● Summary

● Questions

Copyright (C) 2016, ilbers GmbH 3

About Us

● Based in Munich, Germany and Saint Petersburg, Russia
● Provide software development services since 2010
● Areas of expertise:

● Linux and open-source software
● Application and driver development
● Real-time and safety-critical software development
● Networking and wireless
● Virtualization

● Contribute to Linux kernel and other FOSS projects

Copyright (C) 2016, ilbers GmbH 4

Motivation

Product build system
● One-command, on-demand building
● Produce complete, ready-to-use firmware images
● Low effort: No massive changes to upstream packages
● Efficiency: Pre-built binary packages

Customer requirements
● Native compilation for ARM
● Security updates
● Maintenance: 10+ years
● Legal clearing

Features
● Adjust upstream packages
● Build several products
● Share components
● Multiple vendors

Copyright (C) 2016, ilbers GmbH 5

Prior Art: Debian
● Provides many packages (armhf: 17575 src, 35555 bin)
● Provides cross-compilers
● Pre-built binary packages, shorter image creation times
● Very rich tool ecosystem (dpkg, apt, debootstrap, buildd...)
● Conservative version selection: Mature, pre-tested results
● Elaborate license process: Simpler product license clearing
● Long-term maintenance
● Security updates
● Usage scales between individual products and product lines
● One-command, on-demand building of the whole project: Not OOTB
● Build host: Debian (any with debootstrap + chroot / VM)
● ARM: Pre-built → Optimized for chosen CPU variants, e.g.:

● armel: ARMv4+, no FPU, Thumb (“lowest common denominator”)
● armhf: ARMv7, VFP v3 w/16 regs, Thumb-2 (“Cortex”)

Copyright (C) 2016, ilbers GmbH 6

Prior Art: Yocto

● Provides core packages (1298 src)
● Provides cross-compilers
● One-command, on-demand building of the whole project
● Modular, fully customizable build process
● Collaboration process (core / vendors / company / product layers)
● Build optimized for the particular hardware platform
● Builds cross-compilers from scratch
● Builds the whole project from scratch
● Build host: “Any” (in practice, issues beyond tested platforms)

Copyright (C) 2016, ilbers GmbH 7

Isar: Debian + BitBake

Integration System for Automated Root filesystem generation
● Base system: Debian binary packages (not a part of Isar)
● Build system: BitBake, the rule-based build system behind Yocto
● Structure, layering, workflow: Yocto

Copyright (C) 2016, ilbers GmbH 8

Isar at a Glance

● Isar:
● Installs Debian binary packages as a base system
● Builds and installs product's software packages
● Creates ready-to-use images

● Isar is:
● A set of scripts (BitBake recipes) to do the above
● Product template for your own products (a layer)

● Provides infrastructure for:
● Customizations
● Product variability
● Efficient component sharing

Copyright (C) 2016, ilbers GmbH 9

Areas of Application

● Possible uses:
● Any Linux-based embedded devices
● Component sharing across industries

● Benefits:
● Multiple products, easy code reuse
● Build automation
● Build performance

Copyright (C) 2016, ilbers GmbH 10

Isar Development History

● 2004: SLIND (Siemens Linux Distribution) + build.sh
● 2011: SLIND + BitBake
● 2015: Debian + BitBake
● 2016: Started open-sourcing features

Copyright (C) 2016, ilbers GmbH 11

How Isar Works

Create armhf build chroot

Build custom packages

Debian apt

hello.git

buildchroot

hello.deb

Create armhf rootfs rootfs

Create target image

Install custom packages

isar-image-base

● Native compilation with dpkg-buildpackage under QEMU armhf

U-Boot kernel

Copyright (C) 2016, ilbers GmbH 12

BitBake Basics
● Isar: Everything is done in BitBake recipes
● Recipes:

● Procedural rulesets for accomplishing specific work
● Written in a shell-like BitBake language
● Consist mostly of variable and task definitions

● Tasks:
● Function-like code snippets
● Implemented in shell or Python
● May depend on other tasks

● Layers:
● Directories grouping recipes according to e.g. their origin /

ownership / function
● Usually named meta-* (← "metadata")
● Must be listed to be searched
● Must have a layer config file

Copyright (C) 2016, ilbers GmbH 13

Isar Metadata Hierarchy
● isar/: Repo root

● bitbake/: Recipe interpreter
● meta/: Core layer
● meta-isar/: Product template layer
● isar-init-build-env: Build environment initialization script.

Must be sourced in the current shell, not executed in a sub-shell.

Copyright (C) 2016, ilbers GmbH 14

Isar Core Recipes
● meta/: Core layer

● recipes-devtools/: Development tool group (arbitrary)
● buildchroot/: A recipe directory

● buildchroot.bb: Recipe for creating an armhf build chroot
on the host. Doesn't produce a binary package for the target.
BUILDCHROOT_PREINSTALL ?= "gcc make dpkg apt"
do_build() {
 sudo multistrap -a "${DISTRO_ARCH}" \
 -d "${BUILDCHROOT_DIR}" \
 -f "${WORKDIR}/multistrap.conf"
}

● files/: Files belonging to the recipe

Copyright (C) 2016, ilbers GmbH 15

Isar Core Layer
● meta/: Core layer

● classes/: Generic rules inherited by recipes to accomplish
repeating tasks. Implemented in BitBake language.
● dpkg.bbclass: Build binary .deb from pkg.git
● ext4-img.bbclass: Create an ext4 image
● image.bbclass: Create a filesystem image (uses pluggable *-
img.bbclass)

● conf/: Global configuration
● bitbake.conf.sample: Global BitBake config (paths, etc.).

Copied to the build directory by isar-init-build-env.
Includes local configs to form a single global environment.

● layer.conf: Layer config. Mandatory for every layer. Among
other things, specifies where to look for recipes (recipes-
//*.bb).

Copyright (C) 2016, ilbers GmbH 16

Product Layer

● meta-isar/: Product template layer
● classes/: Product-specific classes

● rpi-sdimg.bbclass: Packs U-Boot, kernel, rootfs in an SD
card image. Uses ext4-img.bbclass.

● conf/: Layer configuration
● bblayers.conf.sample: Global layer config. Copied to the

build directory. Defines e.g. layers to use.
BBLAYERS ?= "meta meta-isar"

● local.conf.sample: Local build config. Copied to the build
directory. Defines e.g. the default machine and number of tasks
to start in parallel.
MACHINE ??= "qemuarm"
DISTRO ??= "debian-wheezy"
IMAGE_INSTALL = "hello"
BB_NUMBER_THREADS = "4"

Copyright (C) 2016, ilbers GmbH 17

Product Variants

● meta-isar/: Product template layer
● conf/: Layer configuration

● distro/: Distro configs (suite, arch, apt source, etc.)
● debian-wheezy.conf
● raspbian-stable.conf

● machine/: Board configs (U-Boot, kernel, etc.)
● qemuarm.conf
● rpi.conf

● multiconfig: Enables BitBake to create images for several
different boards (machines) in one call

Copyright (C) 2016, ilbers GmbH 18

Product Recipes

● meta-isar/: Product template layer
● recipes-app/hello/hello.bb: Recipe building a target

application binary Debian package
SRC_URI = "git://github.com/ilbers/hello.git"
SRVREV = "ad7065e"
inherit dpkg

● recipes-core/images/: Recipes producing target images on
the host
● isar-image-base.bb
IMAGE_PREINSTALL += "apt dbus"
do_rootfs () { ... }

● isar-image-debug.bb
IMAGE_PREINSTALL += "gdb strace"
include isar-image-base.bb

Copyright (C) 2016, ilbers GmbH 19

Configuration Management

1. buildchroot.bb

1. do_fetch

Debian apt

app.git

1. do_rootfs

5. do_rpi_sdimg

4. do_populate

meta

dpkg.class
image.class

ext4-img.class

dep

meta-product

isar-image-base.bb

2. do_unpack

app.bb

3. do_install

dep

● Parallel execution through task dependencies

Copyright (C) 2016, ilbers GmbH 20

Isar: Current State

● Isar:
● Core framework
● Product template with -base and -debug images

● Example for building two products that share components:
● https://github.com/ilbers/meta-two-products/
● Targets: QEMU ARM, Raspberry Pi 1 Model B
● Different buildchroots (Debian and Raspbian)
● Image types: ext4, SD card with partitions
● Product images:

● Product A for QEMU
● Product A for Raspberry Pi
● Product B for QEMU

https://github.com/ilbers/meta-two-products/

Copyright (C) 2016, ilbers GmbH 21

Using Isar

Common Development Tasks
● Build default images
● Add a new package
● Create a new product
● Override an upstream package
● Example product development workflow
● Build an older release

Copyright (C) 2016, ilbers GmbH 22

Build Default Images

$ git clone https://github.com/ilbers/isar
$ cd isar
$. isar-init-build-env build
$ bitbake isar-image-base

Build dir

BitBake target(s)
Image name(s), e.g.:

isar-image-debug
multiconfig:rpi:isar-image-base

https://github.com/ilbers/isar

Copyright (C) 2016, ilbers GmbH 23

Add a New Package

● Create the package repo hello.git
● Unpack the sources
● Create debian/* if necessary (e.g., with dh_make)

● Create the recipe meta-product/hello/hello.bb:

SRC_URI = "git://server/hello.git"
SRCREV = "ad7065e"
inherit dpkg

● List package name in IMAGE_INSTALL

Copyright (C) 2016, ilbers GmbH 24

Create a New Product

● Copy meta-isar to your meta-product repo
● Add / modify packages
● Add / modify boards (machines)
● Add / modify images

Copyright (C) 2016, ilbers GmbH 25

● Quick and dirty: Image recipe (inittab, fstab, user creation, ...)
● Current way: Fork the respective package
● Vision: sysvinit.bb:

PV = "2.88dsf-59+myprj2"
SRC_URI = "http://server/sysvinit.dsc \
 file://99-inittab.patch"
SRC_URI[md5sum]="8f3ac1a308b594734ad3f47c809655f8"
inherit dpkg

Add to IMAGE_INSTALL

Override an Upstream Package

Copyright (C) 2016, ilbers GmbH 26

Product Development Workflow
● Release 1.0

● Create repos for all components: Debian, apps, isar, meta-product
● Develop your own code in app.git/master
● Changes upstream code in pkg.git/yourbranch-1.0
● Tag all input components, use the tags in meta-product recipes
● Tag meta-product 1.0
● Branch 1.0, maintain, tag 1.0.1...

● Release 2.0
● Fast-forward upstream components: Debian, isar, modified pkgs
● Develop your own code in app.git/master
● Rebase modified upstream pkg.git/yourbranch-1.0 onto

pkg.git/current master, put the result into pkg.git/yourbranch-2.0
● Tag all input components, use the tags in meta-product recipes
● Tag meta-product 2.0
● Branch 2.0, maintain, tag 2.0.1...

Copyright (C) 2016, ilbers GmbH 27

Build an Older Release

● Making a release:
● Tag the package repo
● Recipes must use the tag (not a branch) as SRCREV
● Tag meta-product

● Check out meta-product/tag 1.0
● Build the images

Copyright (C) 2016, ilbers GmbH 28

Reuse and Variability

Levels of development:
● meta: Isar core

● meta-VENDOR1-bsp
● meta-VENDOR2-libs
● meta-COMPANY: Company-wide common stuff
● meta-DEPT
● meta-PRODUCT1
● meta-PRODUCT2

Copyright (C) 2016, ilbers GmbH 29

Other Approaches: ELBE

Embedded Linux Build Environment: http://elbe-rfs.org/
● Same goals, similar project, different philosophy
● Central tool written in Python

● Builds packages
● Generates images
● Creates a source CD with licenses
● Many features OOTB

● Metadata in a single XML file
● Multiple products → Multiple XML files

http://elbe-rfs.org/

Copyright (C) 2016, ilbers GmbH 30

Other Approaches: meta-debian

meta-debian:
http://elinux.org/images/7/74/LinuxCon2015_meta-debian_r7.pdf
● Different goals, different type of project, different focus
● Debian-based source distribution built with BitBake
● Builds packages from original sources + Debian patches
● Builds with a modified Yocto cross-compiler
● Recipes created from Debian rules manually

http://elinux.org/images/7/74/LinuxCon2015_meta-debian_r7.pdf

Copyright (C) 2016, ilbers GmbH 31

Other Approaches

More Debian image builders:
http://people.linaro.org/~riku.voipio/debian-images/
● “Each tool is tailored for the developer's use case and

personal taste”
● Product development is more than creating a rootfs

http://people.linaro.org/~riku.voipio/debian-images/

Copyright (C) 2016, ilbers GmbH 32

The Isar Way

● Small tools for well-defined tasks
● Tools provide mechanism, policy is in metadata (recipes, conf files)
● Re-use as much as possible (tools, code, binaries)
● Familiar tools, structures, and workflows
● Self-contained, extensible build system
● Local adjustments to upstream: Reasonable effort
● Massive changes to upstream: Either avoid, or work with community
● You [will] want performance

Copyright (C) 2016, ilbers GmbH 33

Isar: Next Steps

● Isar:
● Release creating Debian .dsc
● Release building from Debian .dsc
● Building from / to apt
● Build caching: apt-aware build task (skip building if already in apt)
● https://github.com/ilbers/isar/blob/master/TODO

● BitBake
● Understand Debian build-deps (.dsc backend?)

● You! Yes, you!
● Use it: https://github.com/ilbers/isar/
● Ask for help: https://lists.debian.org/debian-embedded/
● Suggestions?
● Patches!

● Collaboration with other projects

https://github.com/ilbers/isar/blob/master/TODO
https://github.com/ilbers/isar/
https://lists.debian.org/debian-embedded/

Copyright (C) 2016, ilbers GmbH 34

Summary: Benefits of Isar

● Quick project startup
● Familiar, mature tools
● Product template with default images

● Lower development and maintenance costs
● Modularity, flexibility, scalability through using BitBake
● Focus on your core business

● Fast builds
● Re-use pre-built Debian binary packages
● Parallel building with BitBake and dpkg

● Effective collaboration with vendors and community
● Proven-in-use structure and workflows of the Yocto project

Copyright (C) 2016, ilbers GmbH 35

References

● Code: https://github.com/ilbers/isar/
● User manual: https://github.com/ilbers/isar/wiki/User-Manual
● Mailing list: https://lists.debian.org/debian-embedded/

https://github.com/ilbers/isar/
https://github.com/ilbers/isar/wiki/User-Manual
https://lists.debian.org/debian-embedded/

Copyright (C) 2016, ilbers GmbH 36

Questions?

