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About Us

● Based in Munich, Germany and Saint Petersburg, Russia
● Provide software development services since 2010
● Areas of expertise:

● Linux and open-source software
● Application and driver development
● Real-time and safety-critical software development
● Networking and wireless
● Virtualization

● Contribute to Linux kernel and other FOSS projects
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Motivation

Product build system
● One-command, on-demand building
● Produce complete, ready-to-use firmware images
● Low effort: No massive changes to upstream packages
● Efficiency: Pre-built binary packages

Customer requirements
● Native compilation for ARM
● Security updates
● Maintenance: 10+ years
● Legal clearing

Features
● Adjust upstream packages
● Build several products
● Share components
● Multiple vendors
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Prior Art: Debian
● Provides many packages (armhf: 17575 src, 35555 bin)
● Provides cross-compilers
● Pre-built binary packages, shorter image creation times
● Very rich tool ecosystem (dpkg, apt, debootstrap, buildd...)
● Conservative version selection: Mature, pre-tested results
● Elaborate license process: Simpler product license clearing
● Long-term maintenance
● Security updates
● Usage scales between individual products and product lines
● One-command, on-demand building of the whole project: Not OOTB
● Build host: Debian (any with debootstrap + chroot / VM)
● ARM: Pre-built → Optimized for chosen CPU variants, e.g.:

● armel: ARMv4+, no FPU, Thumb (“lowest common denominator”)
● armhf: ARMv7, VFP v3 w/16 regs, Thumb-2 (“Cortex”)
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Prior Art: Yocto

● Provides core packages (1298 src)
● Provides cross-compilers
● One-command, on-demand building of the whole project
● Modular, fully customizable build process
● Collaboration process (core / vendors / company / product layers)
● Build optimized for the particular hardware platform
● Builds cross-compilers from scratch
● Builds the whole project from scratch
● Build host: “Any” (in practice, issues beyond tested platforms)
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Isar: Debian + BitBake

Integration System for Automated Root filesystem generation
● Base system: Debian binary packages (not a part of Isar)
● Build system: BitBake, the rule-based build system behind Yocto
● Structure, layering, workflow: Yocto
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Isar at a Glance

● Isar:
● Installs Debian binary packages as a base system
● Builds and installs product's software packages
● Creates ready-to-use images

● Isar is:
● A set of scripts (BitBake recipes) to do the above
● Product template for your own products (a layer)

● Provides infrastructure for:
● Customizations
● Product variability
● Efficient component sharing
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Areas of Application

● Possible uses:
● Any Linux-based embedded devices
● Component sharing across industries

● Benefits:
● Multiple products, easy code reuse
● Build automation
● Build performance
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Isar Development History

● 2004: SLIND (Siemens Linux Distribution) + build.sh
● 2011: SLIND + BitBake
● 2015: Debian + BitBake
● 2016: Started open-sourcing features
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How Isar Works

Create armhf build chroot

Build custom packages

Debian apt

hello.git

buildchroot

hello.deb

Create armhf rootfs rootfs

Create target image

Install custom packages

isar-image-base

● Native compilation with dpkg-buildpackage under QEMU armhf

U-Boot kernel
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BitBake Basics
● Isar: Everything is done in BitBake recipes
● Recipes:

● Procedural rulesets for accomplishing specific work
● Written in a shell-like BitBake language
● Consist mostly of variable and task definitions

● Tasks:
● Function-like code snippets
● Implemented in shell or Python
● May depend on other tasks

● Layers:
● Directories grouping recipes according to e.g. their origin / 

ownership / function
● Usually named meta-* (← "metadata")
● Must be listed to be searched
● Must have a layer config file
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Isar Metadata Hierarchy
● isar/: Repo root

● bitbake/: Recipe interpreter
● meta/: Core layer
● meta-isar/: Product template layer
● isar-init-build-env: Build environment initialization script. 

Must be sourced in the current shell, not executed in a sub-shell.
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Isar Core Recipes
● meta/: Core layer

● recipes-devtools/: Development tool group (arbitrary)
● buildchroot/: A recipe directory

● buildchroot.bb: Recipe for creating an armhf build chroot 
on the host. Doesn't produce a binary package for the target.
BUILDCHROOT_PREINSTALL ?= "gcc make dpkg apt"
do_build() {
    sudo multistrap -a "${DISTRO_ARCH}" \
        -d "${BUILDCHROOT_DIR}" \
        -f "${WORKDIR}/multistrap.conf"
}

● files/: Files belonging to the recipe
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Isar Core Layer
● meta/: Core layer

● classes/: Generic rules inherited by recipes to accomplish 
repeating tasks. Implemented in BitBake language.
● dpkg.bbclass: Build binary .deb from pkg.git
● ext4-img.bbclass: Create an ext4 image
● image.bbclass: Create a filesystem image (uses pluggable *-
img.bbclass)

● conf/: Global configuration
● bitbake.conf.sample: Global BitBake config (paths, etc.). 

Copied to the build directory by isar-init-build-env. 
Includes local configs to form a single global environment.

● layer.conf: Layer config. Mandatory for every layer. Among 
other things, specifies where to look for recipes (recipes-
*/*/*.bb).
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Product Layer

● meta-isar/: Product template layer
● classes/: Product-specific classes

● rpi-sdimg.bbclass: Packs U-Boot, kernel, rootfs in an SD 
card image. Uses ext4-img.bbclass.

● conf/: Layer configuration
● bblayers.conf.sample: Global layer config. Copied to the 

build directory. Defines e.g. layers to use.
BBLAYERS ?= "meta meta-isar"

● local.conf.sample: Local build config. Copied to the build 
directory. Defines e.g. the default machine and number of tasks 
to start in parallel.
MACHINE ??= "qemuarm"
DISTRO ??= "debian-wheezy"
IMAGE_INSTALL = "hello"
BB_NUMBER_THREADS = "4"
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Product Variants

● meta-isar/: Product template layer
● conf/: Layer configuration

● distro/: Distro configs (suite, arch, apt source, etc.)
● debian-wheezy.conf
● raspbian-stable.conf

● machine/: Board configs (U-Boot, kernel, etc.)
● qemuarm.conf
● rpi.conf

● multiconfig: Enables BitBake to create images for several 
different boards (machines) in one call
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Product Recipes

● meta-isar/: Product template layer
● recipes-app/hello/hello.bb: Recipe building a target 

application binary Debian package
SRC_URI = "git://github.com/ilbers/hello.git"
SRVREV = "ad7065e"
inherit dpkg

● recipes-core/images/: Recipes producing target images on 
the host
● isar-image-base.bb
IMAGE_PREINSTALL += "apt dbus"
do_rootfs () { ... }

● isar-image-debug.bb
IMAGE_PREINSTALL += "gdb strace"
include isar-image-base.bb
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Configuration Management

1. buildchroot.bb

1. do_fetch

Debian apt

app.git

1. do_rootfs

5. do_rpi_sdimg

4. do_populate

meta

dpkg.class
image.class

ext4-img.class

dep

meta-product

isar-image-base.bb

2. do_unpack

app.bb

3. do_install

dep

● Parallel execution through task dependencies
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Isar: Current State

● Isar:
● Core framework
● Product template with -base and -debug images

● Example for building two products that share components:
● https://github.com/ilbers/meta-two-products/
● Targets: QEMU ARM, Raspberry Pi 1 Model B
● Different buildchroots (Debian and Raspbian)
● Image types: ext4, SD card with partitions
● Product images:

● Product A for QEMU
● Product A for Raspberry Pi
● Product B for QEMU

https://github.com/ilbers/meta-two-products/
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Using Isar

Common Development Tasks
● Build default images
● Add a new package
● Create a new product
● Override an upstream package
● Example product development workflow
● Build an older release
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Build Default Images

$ git clone https://github.com/ilbers/isar
$ cd isar
$ . isar-init-build-env build
$ bitbake isar-image-base

Build dir

BitBake target(s)
Image name(s), e.g.:

isar-image-debug
multiconfig:rpi:isar-image-base

https://github.com/ilbers/isar
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Add a New Package

● Create the package repo hello.git
● Unpack the sources
● Create debian/* if necessary (e.g., with dh_make)

● Create the recipe meta-product/hello/hello.bb:

SRC_URI = "git://server/hello.git"
SRCREV = "ad7065e"
inherit dpkg

● List package name in IMAGE_INSTALL
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Create a New Product

● Copy meta-isar to your meta-product repo
● Add / modify packages
● Add / modify boards (machines)
● Add / modify images



Copyright (C) 2016, ilbers GmbH 25

● Quick and dirty: Image recipe (inittab, fstab, user creation, ...)
● Current way: Fork the respective package
● Vision: sysvinit.bb:

PV = "2.88dsf-59+myprj2"
SRC_URI = "http://server/sysvinit.dsc \
           file://99-inittab.patch"
SRC_URI[md5sum]="8f3ac1a308b594734ad3f47c809655f8"
inherit dpkg

Add to IMAGE_INSTALL

Override an Upstream Package
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Product Development Workflow
● Release 1.0

● Create repos for all components: Debian, apps, isar, meta-product
● Develop your own code in app.git/master
● Changes upstream code in pkg.git/yourbranch-1.0
● Tag all input components, use the tags in meta-product recipes
● Tag meta-product 1.0
● Branch 1.0, maintain, tag 1.0.1...

● Release 2.0
● Fast-forward upstream components: Debian, isar, modified pkgs
● Develop your own code in app.git/master
● Rebase modified upstream pkg.git/yourbranch-1.0 onto 

pkg.git/current master, put the result into pkg.git/yourbranch-2.0
● Tag all input components, use the tags in meta-product recipes
● Tag meta-product 2.0
● Branch 2.0, maintain, tag 2.0.1...
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Build an Older Release

● Making a release:
● Tag the package repo
● Recipes must use the tag (not a branch) as SRCREV
● Tag meta-product

● Check out meta-product/tag 1.0
● Build the images
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Reuse and Variability

Levels of development:
● meta: Isar core

● meta-VENDOR1-bsp
● meta-VENDOR2-libs
● meta-COMPANY: Company-wide common stuff
● meta-DEPT
● meta-PRODUCT1
● meta-PRODUCT2
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Other Approaches: ELBE

Embedded Linux Build Environment: http://elbe-rfs.org/
● Same goals, similar project, different philosophy
● Central tool written in Python

● Builds packages
● Generates images
● Creates a source CD with licenses
● Many features OOTB

● Metadata in a single XML file
● Multiple products → Multiple XML files

http://elbe-rfs.org/
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Other Approaches: meta-debian

meta-debian: 
http://elinux.org/images/7/74/LinuxCon2015_meta-debian_r7.pdf
● Different goals, different type of project, different focus
● Debian-based source distribution built with BitBake
● Builds packages from original sources + Debian patches
● Builds with a modified Yocto cross-compiler
● Recipes created from Debian rules manually

http://elinux.org/images/7/74/LinuxCon2015_meta-debian_r7.pdf
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Other Approaches

More Debian image builders: 
http://people.linaro.org/~riku.voipio/debian-images/
● “Each tool is tailored for the developer's use case and 

personal taste”
● Product development is more than creating a rootfs

http://people.linaro.org/~riku.voipio/debian-images/
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The Isar Way

● Small tools for well-defined tasks
● Tools provide mechanism, policy is in metadata (recipes, conf files)
● Re-use as much as possible (tools, code, binaries)
● Familiar tools, structures, and workflows
● Self-contained, extensible build system
● Local adjustments to upstream: Reasonable effort
● Massive changes to upstream: Either avoid, or work with community
● You [will] want performance
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Isar: Next Steps

● Isar:
● Release creating Debian .dsc
● Release building from Debian .dsc
● Building from / to apt
● Build caching: apt-aware build task (skip building if already in apt)
● https://github.com/ilbers/isar/blob/master/TODO

● BitBake
● Understand Debian build-deps (.dsc backend?)

● You! Yes, you!
● Use it: https://github.com/ilbers/isar/
● Ask for help: https://lists.debian.org/debian-embedded/
● Suggestions?
● Patches!

● Collaboration with other projects

https://github.com/ilbers/isar/blob/master/TODO
https://github.com/ilbers/isar/
https://lists.debian.org/debian-embedded/
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Summary: Benefits of Isar

● Quick project startup
● Familiar, mature tools
● Product template with default images

● Lower development and maintenance costs
● Modularity, flexibility, scalability through using BitBake
● Focus on your core business

● Fast builds
● Re-use pre-built Debian binary packages
● Parallel building with BitBake and dpkg

● Effective collaboration with vendors and community
● Proven-in-use structure and workflows of the Yocto project
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References

● Code: https://github.com/ilbers/isar/
● User manual: https://github.com/ilbers/isar/wiki/User-Manual
● Mailing list: https://lists.debian.org/debian-embedded/

https://github.com/ilbers/isar/
https://github.com/ilbers/isar/wiki/User-Manual
https://lists.debian.org/debian-embedded/
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Questions?


