Outline

• Background
• Architecture and Design
• Challenges
• Current Status
• Benchmarks
Background

• Apache Hive: a popular data processing tool for Hadoop
• Apache Spark: a data computing framework to succeed MapReduce
• Marrying the two can benefit users from both community
• Hive-7292: The most watched JIRA in Hive (160+)
Community Involvement

• Efforts from both communities (Hive and Spark)
• Contributions from many organizations
Design Principles

- No or limited impact on Hive’s existing code path
- Maximum code reuse
- Minimum feature customization
- Low future maintenance cost
Class Hierarchy

TaskCompiler
 ▼
 MapRedCompiler TezCompiler

Task
 ▼
 MapRedTask TezTask

Work
 ▼
 MapRedWork TezWork

Generate

Described By
Work – Metadata for Task

- MapRedWork contains a MapWork and a possible ReduceWork
- SparkWork contains a graph of MapWorks and ReduceWorks

Ex Query:

```
SELECT name, sum(value) AS v 
FROM src 
GROUP BY name 
ORDER BY v;
```
Spark Client

• Abreast with MR client and Tez Client
• Talk to Spark cluster
• Support local, local-cluster, standalone, **yarn-cluster**, and yarn-client
• Job submission, monitoring, error reporting, statistics, metrics, and counters.
Spark Context

• Core of Spark client
• Heavy-weighted, thread-unsafe
• Designed for a single-user application
• Doesn’t work in multi-session environment
• Doesn’t scale with user sessions
Remote Spark Context (RSC)

- Being created and living outside HiveServer2
- In yarn-cluster mode, Spark context lives in application master (AM)
- Otherwise, Spark context lives in a separate process (other than HiveServer2)
Data Processing via MapReduce

• Table as HDFS files and read by MR framework
• Map-side processing
• Map output is shuffled by MR framework
• Reduce-side processing
• Reduce output is written to disk as part of reduce-side processing
• Output may be further processed by next MR job or returned to client
Data Processing via Spark

- Treat Table as **HadoopRDD** (input RDD)
- Apply the function that wraps MR’s map-side processing
- Shuffle map output using Spark’s transformations (**groupByKey**, **sortByKey**, etc)
- Apply the function that wraps MR’s reduce-side processing
- Output is either written to file or shuffled again
Spark Plan

- **MapInput** – encapsulates a table
- **MapTran** – map-side processing
- **ShuffleTran** – shuffling
- **ReduceTran** – reduce-side processing

Ex Query:

```
SELECT name, sum(value) AS v
FROM src
GROUP BY name
ORDER BY v;
```
Advantages

- Reuse existing map-side and reduce-side processing
- Agonistic to Spark’s special transformations or actions
- No need to reinvent wheels
- Adopt existing features: authorization, window functions, UDFs, etc
- Open to future features
Challenges

- Missing features or functional gaps in Spark
 - Concurrent data pipelines
 - Spark Context issues
 - Scala vs Java API
 - Scheduling issues
- Large code base in Hive, many contributors working in different areas
- Library dependency conflicts among projects
Dynamic Executor Scaling

- Spark cluster per user session
- Heavy user vs light user
- Big query vs small query
- Solution: executors up and down based on workload
Current Status

• All functionality is implemented
• First round of optimization is completed
• More optimization and benchmarking coming
• Beta release in CDH5.4
• Released in Apache Hive 1.1.0
• Follow HIVE-7292 for current and future work
Optimizations

• Map join, bucket map join, SMB, skew join (static and dynamic)
• Split generating and grouping
• CBO, vectorization
• More to come, including table caching, dynamic partition pruning
Summary

- Community driven project
- Multi-organization support
- Combining merits from multiple projects
- Benefiting a large user base
- Bearing solid foundations
- A solid, evolving project
Benchmarks – Cluster Setup

- Done by our team members from Intel
- 8 physical nodes
- Each has 32 logical cores and 64GB memory
- 10000Mb/s network between the nodes

<table>
<thead>
<tr>
<th>Component</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hive</td>
<td>spark-branch</td>
</tr>
<tr>
<td>Spark</td>
<td>1.3.0</td>
</tr>
<tr>
<td>Hadoop</td>
<td>2.6.0</td>
</tr>
<tr>
<td>Tez</td>
<td>0.5.3</td>
</tr>
</tbody>
</table>
Benchmarks – Test Configuration

• 320GB and 4TB TPC-DS datasets
• Three engines share the most of the configurations
 • Each node is allocated 32 cores and 48GB memory
 • Vectorization enabled
 • CBO enabled
 • `Hive.auto.convert.join.noconditionalaltask.size = 600MB`
Benchmarks – Test Configurations

• Hive on Tez
 • `hive.prewarm.numcontainers = 250`
 • `hive.tez.auto.reducer.parallelism = true`
 • `hive.tez.dynamic.partition.pruning = true`

• Hive on Spark
 • `spark.master = yarn-client`
 • `spark.executor.memory = 5120m`
 • `spark.yarn.executor.memoryOverhead = 1024`
 • `spark.executor.cores = 4`
 • `spark.kryo.referenceTracking = false`
 • `spark.io.compression.codec = lzf`
Benchmarks – Data Collecting

• We run each query 2 times and measure the 2nd run
• Spark on yarn waits for a number of executors to register before scheduling tasks, thus with a bigger start-up overhead
• We measure a few queries for Hive on Tez w/ or w/o dynamic partition pruning for comparison, as this optimization hasn’t been implemented in Hive on Spark yet
MR vs Spark vs Tez, 320GB

![Bar chart comparing MR, Spark, and Tez for various queries with 320GB input data.](image)
MR vs Spark vs Tez, 320GB

DPP helps Tez
Benchmark - Dynamic Partition Pruning

• Prune partitions at runtime
 • Ex Query:

```sql
SELECT count(*) FROM src JOIN src_date ON (src.ds = src_date.ds) WHERE src_date.`date` = '2015-04-16'
```

(src is partitioned on ds, but src_date is NOT partitioned.)

• Can dramatically improve performance when tables are joined on partitioned columns
• To be implemented in Hive on Spark
Spark vs Tez vs Tez w/o DPP, 320GB
MR vs Spark vs Tez, 4TB
Spark vs Tez, 4TB

- Simple count(*)
- Simple map join
- Simple common join
- Q3
- Q15
- Q19
- Q21
- Q22
- Q28
- Q82
- Q84
- Q88
- Q90

Legend:
- Spark
- Tez
Spark vs Tez, 4TB

DPP helps Tez
Spark vs Tez vs Tez w/o DPP, 4TB

Q3 Q15 Q19

Spark Tez Tez w/o DPP
Spark vs Tez, 4TB

Spark is faster
Benchmarks - Summary

• Spark is as fast as or faster than Tez on many queries (Q28, Q88, etc.)
• Dynamic partition pruning helps Tez a lot on certain queries (Q3, Q15, Q19). Without DPP for Tez, Spark is close or even faster
• Spark is slower on certain queries (common join, Q84) than Tez. Investigation and improvement is on the way
• Bigger dataset seems to help Spark more
• Spark will likely be faster after DPP is implemented
Questions?