
Managing Containers with Helix

Kanak Biscuitwala
Jason Zhang

Apache Helix Committers @ LinkedIn
helix.apache.org

@apachehelix

Intersection of Job Types

OracleDB OracleDB

Intersection of Job Types

OracleDB OracleDB

BackupBackup

Intersection of Job Types

OracleDB OracleDB

BackupBackup

HDFS

ETL ETL

Intersection of Job Types

OracleDB OracleDB

BackupBackup

HDFS

ETL ETL

Long-running and batch jobs running together!

Cloud Deployment

A

B

online

nearline

C batch

A1 A1

A2 A3B1

C1 C2

C3

B2 B3

C2

B4 B5

C2 C4

Applications with diverse requirements running
together in a datacenter

Cloud Deployment

A

B

C

A1 A1

A2 A3B1

C1 C2

C3

B2 B3

C2

B4 B5

C2 C4

Applications with diverse requirements running
together in a datacenter

DB

Backup

ETL

Processes on Machines

Machine ContainerProcess VM

Processes on Machines

TaskTaskProcess

No Isolation

Machine ContainerProcess VM

Processes on Machines

TaskTaskProcess

128 MB

128 MB

128 MB

Process

Process

Process

No Isolation VM-based Isolation

Machine ContainerProcess VM

Processes on Machines

TaskTaskProcess

256 MB

64 MB

128 MB

128 MB

128 MB

Process

Process

Process Process

Process

No Isolation VM-based Isolation Container-based Isolation

Machine ContainerProcess VM

• Run as individual processes
– Poor isolation or poor utilization

• Virtual machines
– Better isolation
– Xen, Hyper-V, ESX, KVM

• Containers
– cgroup
– YARN, Mesos
– Super lightweight, dynamic based on application

requirements

Processes on Machines

Processes on Machines

Virtualization and containerization significantly improve
process isolation and open up possibilities for efficient

utilization of physical resources

Container-Based Solution

Container-Based Solution
System Requirements

A

B

C

64 MB 64 MB 64 MB

128 MB 128 MB

256 MB

Container-Based Solution
Allocation

64 MB

64 MB

128 MB

256 MB

128 MB

64 MB

Machine

Container

Container-Based Solution
Allocation

64 MB

64 MB

128 MB

256 MB

128 MB

64 MB

Machine

Container

A

A

A

B

B

C

Process

Container-Based Solution
Allocation

64 MB

64 MB

128 MB

256 MB

128 MB

64 MB

Containerization is powerful!

Machine

Container

A

A

A

B

B

C

Process

Container-Based Solution
Allocation

64 MB

64 MB

128 MB

256 MB

128 MB

64 MB

Containerization is powerful!

Machine

Container

A

A

A

B

B

C

Process

But do processes always fit so nicely?

Over-Utilization

256 MB

Container-Based Solution Machine

ContainerProcess

Over-Utilization

256 MB
Process 1

Container-Based Solution Machine

ContainerProcess

Over-Utilization

Outcome: Preemption and relaunch

256 MB
Process 1

Container-Based Solution Machine

ContainerProcess

Over-Utilization

Outcome: Preemption and relaunch

Container-Based Solution

384 MB

Machine

ContainerProcess

Over-Utilization

Outcome: Preemption and relaunch

Container-Based Solution

384 MBProcess 1

Machine

ContainerProcess

Under-Utilization

384 MB

128 MB

Container-Based Solution Machine

ContainerProcess

Under-Utilization

Outcome: Over-provisioned until restart

384 MB
Process 1

128 MB

Container-Based Solution Machine

ContainerProcess

Process 2

Container-Based Solution
Failure

64 MB

64 MB

128 MB

256 MB

128 MB

64 MB

Machine

Container

A

A

A

B

B

C

Process

Container-Based Solution
Failure

64 MB

64 MB

128 MB

128 MB

Machine

Container

A

A

B

B

Process

Container-Based Solution
Failure

64 MB

64 MB

128 MB

128 MB

Outcome: Launch containers elsewhere

Machine

Container

A

A

B

B

Process

256 MBC
64 MBA

What about stateful systems?

Container-Based Solution
Failure

64 MB

64 MB

128 MB

256 MB

128 MB

64 MB

Machine

Container

SLAVE

SLAVE

MASTER

B

B

C

Process

Container-Based Solution
Failure

64 MB

64 MB

128 MB

128 MB

Without additional information, the
master is unavailable until restart

Machine

Container

SLAVE

SLAVE

B

B

Process

Scaling
Container-Based Solution Machine

ContainerProcess

256 MB50% 256 MB50%

Scaling
Container-Based Solution Machine

ContainerProcess

Scaling
Container-Based Solution Machine

ContainerProcess

128 MB33% 128 MB33% 128 MB33%

Outcome: Relaunch with new sharding

Container-Based Solution

Container-Based Solution

Utilization Application requirements define container
size

Fault Tolerance New container is started

Scaling Workload is repartitioned and new containers
are brought up

Discovery Existence

Container-Based Solution

We need something finer-grained

The container model provides flexibility within machines,
but assumes homogeneity of tasks within containers

Task-Based Solution

Task-Based Solution
System Requirements

A

B

C

complete in less than 5 hours

always have 2 containers running

response time should be less than 50 ms

Task-Based Solution
Allocation

Machine

Container

A A

B

Task

B

C

C

Over-Utilization
Task-Based Solution Machine

ContainerTask

Over-Utilization
Task-Based Solution

Task 1

Machine

ContainerTask

Over-Utilization
Task-Based Solution

Task 1

Machine

ContainerTask

Over-Utilization
Task-Based Solution

Task 1

Machine

ContainerTask

Task 1

Over-Utilization
Task-Based Solution

Hide the overhead of a container restart

Machine

ContainerTask

Task 1

Under-Utilization

384 MB

128 MB

Task-Based Solution Machine

ContainerTask

Under-Utilization

384 MB
Task 1

128 MB
Task 2

Task-Based Solution Machine

ContainerTask

Under-Utilization

Optimize container allocations based on usage

384 MB
Task 1

Task 2

Task-Based Solution Machine

ContainerTask

Task-Based Solution
Failure

Task 1
Leader

Task 2
Leader

Task 3
Leader

Task 2
Standby

Task 3
Standby

Task 1
Standby

Task 2
Standby

Task 1
Standby

Task 3
Standby

Machine

Container

Task-Based Solution
Failure

Task 1
Leader

Task 2
Leader

Task 2
Standby

Task 3
Standby

Task 1
Standby

Task 3
Standby
Task 3
Leader

Machine

Container

Task-Based Solution
Failure

Some systems cannot wait for new
containers to start

Task 1
Leader

Task 2
Leader

Task 2
Standby

Task 3
Standby

Task 1
Standby

Task 3
Standby
Task 3
Leader

Machine

Container

Task-Based Solution
Discovery

Task 1
Leader

Task 2
Leader

Task 2
Standby

Machine

Container

Task 1:!
Leader at N1
Standby at N2

Task 1
Standby

Task 2:!
Leader at N2
Standby at N1

N1 N2

Task-Based Solution
Discovery

Task 1
Leader

Task 2
Leader

Task 2
Standby

Machine

Container

Learn where everything runs, and what state each task is in

Task 1:!
Leader at N1
Standby at N2

Task 1
Standby

Task 2:!
Leader at N2
Standby at N1

N1 N2

Scaling
Task-Based Solution

T4

T5

T6

T1

T2

T3

Machine

ContainerTask

Scaling
Task-Based Solution

T4

T5

T6

T1

T2

T3

Machine

ContainerTask

Scaling
Task-Based Solution

T4

T5 T6

T1

T2

T3

Machine

ContainerTask

Scaling
Task-Based Solution

T4

T5 T6

T1

T2

T3

Machine

ContainerTask

Comparing Solutions

Container Solution Task + Container Solution

Utilization Application requirements
define container size

Tasks are distributed as
needed to a minimal

container set as per SLA

Fault Tolerance New container is started
Existing task can assume a
new state while waiting for

new container

Scaling
Workload is repartitioned
and new containers are

brought up

Tasks are moved across
containers

Discovery Existence Existence and state

Benefits of a Task-Based Solution
Comparing Solutions

Container reuse
Minimize overhead of container relaunch

Fine-grained scheduling

Benefits of a Task-Based Solution
Comparing Solutions

Container reuse
Minimize overhead of container relaunch

Fine-grained scheduling

Task : Container :: Thread : Process
Task is the right level of abstraction

Working at task granularity is powerful

We need a reactive approach to resource assignment

Comparing Solutions

Working at task granularity is powerful

How can Helix help?

We need a reactive approach to resource assignment

Comparing Solutions

Working at task granularity is powerful

How can Helix help?

We need a reactive approach to resource assignment

Comparing Solutions

YARN/Mesos: containers bring flexibility in a machine
Helix: tasks bring flexibility in a container

Task Management with Helix

Application Lifecycle

Capacity
Planning

Provisioning

Fault
Tolerance

State
Management

Allocating physical resources for your load

Deploying and launching tasks

Staying available, ensuring success

Determining what code should be running and where

Controller NODES (Participants)

Spectators

Controller
Controller

Manage
TASKS

Helix Overview
Cluster Roles

Helix Controller
High-Level Overview

Rebalancer

Task Assignment

Constraints

Nodes

“single master”
“no more than 3 tasks

per machine”

Helix Controller
Rebalancer

ResourceAssignment computeResourceMapping(
 RebalancerConfig rebalancerConfig,	
 ResourceAssignment prevAssignment, 	
 Cluster cluster, 	
 ResourceCurrentState currentState);	

Based on the current nodes in the cluster and constraints, find an
assignment of task to node

Helix Controller
Rebalancer

ResourceAssignment computeResourceMapping(
 RebalancerConfig rebalancerConfig,	
 ResourceAssignment prevAssignment, 	
 Cluster cluster, 	
 ResourceCurrentState currentState);	

Based on the current nodes in the cluster and constraints, find an
assignment of task to node

What else do we need?

Helix Controller
What is Missing?

Dynamic Container
Allocation

Container Isolation

Automated Service
Deployment

Resource Utilization
Monitoring

Helix Controller
Target Provider

Based on some constraints, determine how many
containers are required in this system

Fixed

CPU

Memory

Bin Packing

We’re working on integrating with monitoring systems
in order to query for usage information

Helix Controller
Target Provider

Based on some constraints, determine how many
containers are required in this system

TargetProviderResponse evaluateExistingContainers(
 Cluster cluster,	
 ResourceId resourceId,	
 Collection<Participant> participants);

class TargetProviderResponse { 	
 List<ContainerSpec> containersToAcquire;	
 List<Participant> containersToRelease;	
 List<Participant> containersToStop;	
 List<Participant> containersToStart;	
}

Fixed

CPU

Memory

Bin Packing

We’re working on integrating with monitoring systems
in order to query for usage information

Helix Controller
Adding a Target Provider

Rebalancer

Task Assignment

Constraints

Nodes

Target Provider

Helix Controller
Adding a Target Provider

Rebalancer

Task Assignment

Constraints

Nodes

Target Provider

How do we use the target provider response?

Helix Controller
Container Provider

Given the container requirements, ensure that number
of containers are running

YARN

Mesos

Local

Helix Controller
Container Provider

Given the container requirements, ensure that number
of containers are running

ListenableFuture<ContainerId>
allocateContainer(ContainerSpec spec);	
!
ListenableFuture<Boolean>
deallocateContainer(ContainerId containerId);	
!
ListenableFuture<Boolean>
startContainer(ContainerId containerId,	
 Participant participant);	
!
ListenableFuture<Boolean>
stopContainer(ContainerId containerId);

YARN

Mesos

Local

Helix Controller
Adding a Container Provider

Rebalancer

Task Assignment

Constraints

Nodes

Target Provider

Container Provider

Target Provider + Container Provider = Provisioner

Application Lifecycle

Capacity
Planning

Provisioning

Fault
Tolerance

State
Management

Target Provider

Container Provider

Existing Helix Controller (enhanced by Provisioner)

Existing Helix Controller (enhanced by Provisioner)

With Helix and the Task Abstraction

System Architecture

System Architecture

Resource Provider

System Architecture

submit job
Resource ProviderClient

System Architecture

submit job
Resource Provider

Controller Container

Provisioner

Rebalancer

Client

App Launcher

System Architecture

submit job
Resource Provider

Controller Container

Provisioner

Rebalancer

Client

container
request

App Launcher

System Architecture

submit job
Resource Provider

Controller Container

Provisioner

Rebalancer

Client

container
request

Participant Container

Participant Launcher

Helix Participant

App

App Launcher

System Architecture

submit job
Resource Provider

Controller Container

Provisioner

Rebalancer

Client

container
request

Participant Container

Participant Launcher

Helix Participant

App

App Launcher

assign tasks

HDFS/Common Area

Helix + YARN
YARN Architecture

Client
Resource
Manager

Application Master Container

Node Manager Node Manager

submit job

node statusnode status
container
request

assign work

status

App Package

grab package

HDFS/Common Area

Helix + YARN
Helix + YARN Architecture

Client
Resource
Manager

Application Master Container

Node Manager Node Manager

submit job

node statusnode status
container
request

assign tasks

status

Helix Controller

Rebalancer

Helix Participant

App

App Package

grab package

 HDFS/Common Area

Scheduler Slave

Helix + Mesos
Mesos Architecture

Scheduler
Mesos
Master

Slave Machine Slave Machine

Mesos Slave
Mesos Slave

offer resources

node statusnode status

Mesos Executor

grab executor

Executor Package

offer response

Scheduler Slave
Helix Controller

Helix + Mesos
Helix + Mesos Architecture

Scheduler
Mesos
Master

Slave Machine Slave Machine

Mesos Slave

Mesos Slave

offer resources

node statusnode status

assign tasks

 HDFS/Common Area

Mesos Executor

grab executor

Helix Executor Package

offer response

Helix Participant/App

Example

Distributed Document Store
Overview

Oracle
Partition 0
Partition 1
Partition 2 Oracle

Partition 0
Partition 1
Partition 2

P1 BackupP2 Backup

HDFS

ETL ETL

Master
Slave

Oracle
Partition 0
Partition 1
Partition 2

P0 Backup

ETL

Distributed Document Store
Overview

Oracle
Partition 0
Partition 1
Partition 2 Oracle

Partition 0
Partition 1
Partition 2

P1 BackupP2 Backup

HDFS

ETL ETL

Master
Slave

P0 Backup

Partition 0
Partition 1
Partition 2

Distributed Document Store
YARN Example

Client
Resource
Managersubmit job

container
request

assign work

status

node status

Application Master

Node Manager

Helix Controller

Rebalancer

Container

Node Manager

node status

Helix Participant

OraclePartition 0
Partition 1

P1 Backup ETL

YAML Specification
appConfig: { config: { k1: v1 } }	
appPackageUri: 'file://path/to/myApp-pkg.tar'	
appName: myApp	
services: [DB, ETL] # the task containers	
serviceConfigMap:	
 {DB: { num_containers: 3, memory: 1024 }, ...	
 ETL: { time_to_complete: 5h, ... }, ...}	
servicePackageURIMap: {	
 DB: ‘file://path/to/db-service-pkg.tar', ...	
}	
...	

Distributed Document Store

YAML Specification
appConfig: { config: { k1: v1 } }	
appPackageUri: 'file://path/to/myApp-pkg.tar'	
appName: myApp	
services: [DB, ETL] # the task containers	
serviceConfigMap:	
 {DB: { num_containers: 3, memory: 1024 }, ...	
 ETL: { time_to_complete: 5h, ... }, ...}	
servicePackageURIMap: {	
 DB: ‘file://path/to/db-service-pkg.tar', ...	
}	
...	

Distributed Document Store

TargetProvider
specification

Service/Container Implementation

public class MyQueuerService	
 extends StatelessParticipantService {	
 @Override	
 public void init() { ... }	
!
 @Override	
 public void onOnline() { ... }	
!
 @Override	
 public void onOffline() { ... }	
}

Distributed Document Store

Task Implementation

public class BackupTask extends Task {	
 @Override	
 public ListenableFuture<Status> start() { ... }	
!
 @Override	
 public ListenableFuture<Status> cancel() { ... }	
!
 @Override	
 public ListenableFuture<Status> pause() { ... }	
!
 @Override	
 public ListenableFuture<Status> resume() { ... }	
}

Distributed Document Store

Distributed Document Store
State Model-Style Callbacks

public class StoreStateModel extends StateModel {	
 public void onBecomeMasterFromSlave() { ... }	
!
 public void onBecomeSlaveFromMaster() { ... }	
!
 public void onBecomeSlaveFromOffline() { ... }	
!
 public void onBecomeOfflineFromSlave() { ... }	
}

class	 RoutingLogic	 {	
	 	 	 public	 void	 write(Request	 request)	 {	
	 	 	 	 	 partition	 =	 getPartition(request.key);	
	 	 	 	 	 List<Participant>	 nodes	 =	
	 	 	 	 	 	 	 	 	 routingTableProvider.getInstance(
	 	 	 	 	 	 	 	 	 	 	 	 	 partition,	 “MASTER”);	
	 	 	 	 	 nodes.get(0).write(request);	
	 	 	 }	
!
	 	 	 public	 void	 read(Request	 request)	 {	
	 	 	 	 	 partition	 =	 getPartition(request.key);	
	 	 	 	 	 List<Participant>	 nodes	 =	
	 	 	 	 	 	 	 	 	 routingTableProvider.getInstance(partition);	
	 	 	 	 	 random(nodes).read(request);	
	 	 	 }	
}

Spectator (for Discovery)
Distributed Document Store

Helix at LinkedIn

Helix at LinkedIn

OracleOracleOracleDB

Change Capture

Change
Consumers

Index Search Index

User Writes

Data Replicator

Backup/Restore

In Production

ETL

HDFS

Analytics

Helix at LinkedIn
In Production

Over 1000 instances covering over 30000
database partitions

Over 1000 instances for change
capture consumers

As many as 500 instances in a
single Helix cluster

(all numbers are per-datacenter)

Summary

•Container abstraction has become a huge win
• With Helix, we can go a step further and make

tasks the unit of work
• With the TargetProvider and ContainerProvider

abstractions, any popular provisioner can be
plugged in

Questions?

Jason zzhang@apache.org

Kanak kanak@apache.org

Website helix.apache.org

Dev Mailing List dev@helix.apache.org

User Mailing List user@helix.apache.org

Twitter @apachehelix?

mailto:zzhang@apache.org?subject=
mailto:kanak@apache.org?subject=
http://helix.apache.org
mailto:dev@helix.apache.org
mailto:user@helix.apache.org

