Introduction

References and Presentation at:
http://www.elinux.org/SOC_Spies
Introduction

- Dave Anders aka prpplague
Introduction

- Dave Anders aka prpplague
- Currently Contracted with CircuitCo
Introduction

- Dave Anders aka prpplague
- Currently Contracted with CircuitCo
- Partners in TinCanTools
Introduction

- Dave Anders aka prpplague
- Currently Contracted with CircuitCo
- Partners in TinCanTools
- Double-Agent Developer: ARM vs. X86
Introduction

- Dave Anders aka prpplague
- Currently Contracted with CircuitCo
- Partners in TinCanTools
- Double-Agent Developer: ARM vs. X86
 - NOT Flame Fest
Introduction

- Dave Anders aka prpplague
- Currently Contracted with CircuitCo
- Partners in TinCanTools
- Double-Agent Developer: ARM vs. X86
 - NOT Flame Fest
 - NOT representing any company or organization
Introduction

- Dave Anders aka prpplague
- Currently Contracted with CircuitCo
- Partners in TinCanTools
- Double-Agent Developer: ARM vs. X86
 - NOT Flame Fest
 - NOT representing any company or organization
 - NOT promoting one architecture over another
Introduction

- Dave Anders aka prpplague
- Currently Contracted with CircuitCo
- Partners in TinCanTools
- Double-Agent Developer: ARM vs. X86
 - Historical Perspective
Introduction

- Dave Anders aka prpplague
- Currently Contracted with CircuitCo
- Partners in TinCanTools
- Double-Agent Developer: ARM vs. X86
 - Historical Perspective
 - General Pros/Cons
Introduction

- Dave Anders aka prpplague
- Currently Contracted with CircuitCo
- Partners in TinCanTools
- Double-Agent Developer: ARM vs. X86
 - Historical Perspective
 - General Pros/Cons
 - Practical Considerations
Historical Perspective

- Embedded in 1999
Historical Perspective

- Embedded in 1999
 - Geode
 - STPC
 - i486
Historical Perspective

- Embedded in 1999
- TCS-X1
Historical Perspective

- Embedded in 1999
- TCS-X1
- ITSY
Historical Perspective

- Embedded in 1999
- TCS-X1
- ITSY
 - Design Files
 - Linux Support
 - ARM Based
Historical Perspective

- Embedded in 1999
- TCS-X1
- ITSY
- PandaBoard
Historical Perspective

- Embedded in 1999
- TCS-X1
- ITSY
- PandaBoard
 - Design Files
 - Linux Support
 - ARM Based
Historical Perspective

- Embedded in 1999
- TCS-X1
- ITSY
- PandaBoard
 - Intel x86???
Historical Perspective

- Embedded in 1999
- TCS-X1
- ITSY
- PandaBoard
- MinnowBoard
- MinnowBoard Max
Historical Perspective

- Embedded in 1999
- TCS-X1
- ITSY
- PandaBoard
- MinnowBoard
- MinnowBoard Max
 - Design Files
 - Linux Support
 - IA 64-bit
Historical Perspective

- Embedded in 1999
- TCS-X1
- ITSY
- PandaBoard
- MinnowBoard
- MinnowBoard Max
- X86 and ARM Designs
Historical Perspective

- Embedded in 1999
- TCS-X1
- ITSY
- PandaBoard
- MinnowBoard
- MinnowBoard Max
- X86 and ARM Designs

Experiences and opinions represented here are from my personal perspective of creating open source hardware designs that first and foremost run Linux.
General Pros/Cons

- x86 Pros
General Pros/Cons

- x86 Pros – Uniformity
General Pros/Cons

- x86 Pros – Uniformity
 - Decades spent working on uniformity
General Pros/Cons

- x86 Pros – Uniformity
 - Decades spent working on uniformity
 - Component Vendor infrastructure
General Pros/Cons

- x86 Pros – Uniformity
 - Decades spent working on uniformity
 - Component Vendor infrastructure
 - Reference Designs
x86 Pros – Uniformity
- Decades spent working on uniformity
- Component Vendor infrastructure
- Reference Designs #exactsteps
General Pros/Cons

- x86 Pros – Uniformity
 - Decades spent working on uniformity
 - Component Vendor infrastructure
 - Reference Designs #exactsteps

Here is a reference design, if you use it exactly as given, it will work!
General Pros/Cons

- x86 Pros – Uniformity
- ARM Pros
General Pros/Cons

- x86 Pros – Uniformity
- ARM Pros – Flexibility
General Pros/Cons

- **x86 Pros** – Uniformity
- **ARM Pros** – Flexibility
 - No one enforcing compatibility
General Pros/Cons

- **x86 Pros** – Uniformity
- **ARM Pros** – Flexibility
 - No one enforcing compatibility
 - Open Vendor interaction
General Pros/Cons

- x86 Pros – Uniformity
- ARM Pros – Flexibility
 - No one enforcing compatibility
 - Open Vendor interaction
 - Reference Designs
General Pros/Cons

- x86 Pros – Uniformity
- ARM Pros – Flexibility
 - No one enforcing compatibility
 - Open Vendor interaction
 - Reference Designs #rtfm
General Pros/Cons

- x86 Pros – Uniformity
- ARM Pros – Flexibility
 - No one enforcing compatibility
 - Open Vendor interaction
 - Reference Designs #rtfm

Here is a reference design with one example of implementation and if you change it, you better check the datasheet!
General Pros/Cons

- x86 Pros – Uniformity
- ARM Pros – Flexibility
General Pros/Cons

- x86 Pros – Uniformity
- ARM Pros – Flexibility

The things that provide the greatest strengths for both ARM and x86 are also their greatest weaknesses.
General Pros/Cons

- x86 Pros – Uniformity
- ARM Pros – Flexibility
- x86 Cons
 - Rigid adherence standards
General Pros/Cons

- x86 Pros – Uniformity
- ARM Pros – Flexibility
- x86 Cons
 - Rigid adherence to standards
 - Lack of vendor interaction
General Pros/Cons

- **x86 Pros** – Uniformity
- **ARM Pros** – Flexibility
- **x86 Cons**
 - Rigid adherence standards
 - Lack of Vendor interaction
 - Lack of Design variations
General Pros/Cons

- x86 Pros – Uniformity
- ARM Pros – Flexibility
- x86 Cons
- ARM Cons
General Pros/Cons

- **x86 Pros** – Uniformity
- **ARM Pros** – Flexibility
- **x86 Cons**
- **ARM Cons**
 - Lack of standards enforcement
General Pros/Cons

- x86 Pros – Uniformity
- ARM Pros – Flexibility
- x86 Cons
- ARM Cons
 - Lack of standards enforcement
 - Lack of vendor compliance
General Pros/Cons

- x86 Pros – Uniformity
- ARM Pros – Flexibility
- x86 Cons
- ARM Cons
 - Lack of standards enforcement
 - Lack of vendor compliance
 - Lack of Design validation
General Pros/Cons

- x86 Pros – Uniformity
- ARM Pros – Flexibility
- x86 Cons
- ARM Cons
- Pathway Forward
General Pros/Cons

- x86 Pros – Uniformity
- ARM Pros – Flexibility
- x86 Cons
- ARM Cons
- Pathway Forward
 - x86 → embedded
 - ARM → server
General Pros/Cons

- x86 Pros – Uniformity
- ARM Pros – Flexibility
- x86 Cons
- ARM Cons

Pathway Forward
- x86 → embedded – relaxing standards - easy
- ARM → server
General Pros/Cons

- **x86 Pros** – Uniformity
- **ARM Pros** – Flexibility
- **x86 Cons**
- **ARM Cons**
- Pathway Forward
 - **x86 → embedded** – relaxing standards - easy
 - **ARM → server** – enforcing standards - hard
Practical Considerations

- Hardware
Practical Considerations

- **Hardware**
 - Component Count (Pro-Arm/Con-x86)
Practical Considerations

- **Hardware**
 - Component Count (Pro-Arm/Con-x86)
- **Hardware**
 - Component Count (Pro-Arm/Con-x86)

BeagleBone Black
18 Unique Values
131 Total Resisors
Practical Considerations

- **Hardware**
 - **Component Count (Pro-Arm/Con-x86)**

 - **BeagleBone Black**
 - 18 Unique Values
 - 131 Total Resisors

 - **MinnowBoard Max**
 - 73 Unique Values
 - 322 Total Resisors
Practical Considerations

- Hardware
 - Component Count (Pro-Arm/Con-x86)
Practical Considerations

- Hardware
 - Component Count (Pro-Arm/Con-x86)
Practical Considerations

- Hardware
 - Component Count (Pro-Arm/Con-x86)
 - Power Supplies (Pro-x86/Con-ARM)
Practical Considerations

- Hardware
 - Component Count (Pro-Arm/Con-x86)
 - Power Supplies (Pro-x86/Con-ARM)
 - Use without dedicated PMIC
 - Robust fault tolerance
 - Wide component selection
Practical Considerations

- **Hardware**
 - Component Count (Pro-Arm/Con-x86)
 - Power Supplies (Pro-x86/Con-ARM)
 - Peripherals (Pro-ARM/Con-x86)
Practical Considerations

- **Hardware**
 - Component Count (Pro-Arm/Con-x86)
 - Power Supplies (Pro-x86/Con-ARM)
 - Peripherals (Pro-ARM/Con-x86)
 - Limited component selection
 - Gige PHY on MinnowBoard
 - Codec on MinnowBoard
Practical Considerations

- Hardware
 - Component Count (Pro-Arm/Con-x86)
 - Power Supplies (Pro-x86/Con-ARM)
 - Peripherals (Pro-ARM/Con-x86)
 - Peripherals (Pro-x86/Con-ARM)
Practical Considerations

- **Hardware**
 - Component Count (Pro-Arm/Con-x86)
 - Power Supplies (Pro-x86/Con-ARM)
 - Peripherals (Pro-ARM/Con-x86)
 - Peripherals (Pro-x86/Con-ARM)
 - Too many options
 - Lack of example configurations
 - Design for least common denominator
 - USB PHY on PandaBoard
Practical Considerations

- Hardware
- Software
Practical Considerations

- Hardware
- Software
 - Cross/Native Compile
Practical Considerations

- Hardware
- Software
 - Cross/Native Compile
 - PinMuxing
 - Device Tree Overlays (Pantelis Antoniou)
Practical Considerations

- **Hardware**
- **Software**
 - Cross/Native Compile
 - PinMuxing
 - Device Tree Overlays (Pantelis Antoniou)
 - ACPI with SSDT (Rafael Wysocki)
Practical Considerations

- Hardware
- Software
 - Cross/Native Compile
 - PinMuxing
 - Device Tree Overlays (Pantelis Antoniou)
 - ACPI with SSDT (Rafael Wysocki)
 - ACPI on ARM (Graeme Gregory)
Practical Considerations

- Hardware
- Software
 - Cross/Native Compile
 - PinMuxing
 - Mainline Linux Support
Practical Considerations

- Hardware
- Software
 - Cross/Native Compile
 - PinMuxing
 - Mainline Linux Support
 - Evil Vendor Trees
 - Distribution Selection
Conclusion

- Historical Perspective
- Generals Pros/Cons
- Practical Considerations
Conclusion

- Historical Perspective
- Generals Pros/Cons
- Practical Considerations
- Use the Arch that makes the most sense
Conclusion

- Historical Perspective
- Generals Pros/Cons
- Practical Considerations
- Use the Arch that makes the most sense
- ARM and x86 have a common enemy
Conclusion

- Historical Perspective
- Generals Pros/Cons
- Practical Considerations
- Use the Arch that makes the most sense
- ARM and x86 have a common enemy

SYSTEMD
Questions?

http://www.elinux.org/SOC_Spies