
Secure and flexible boot with U-Boot bootloader

Marek Vašut <marex@denx.de>

October 15, 2014

Marek Vašut <marex@denx.de> Secure and flexible boot with U-Boot bootloader

Marek Vasut

I Software engineer at DENX S.E. since 2011
I Embedded and Real-Time Systems Services, Linux kernel and

driver development, U-Boot development, consulting, training.

I Custodian at U-Boot bootloader

I Versatile Linux kernel hacker

Marek Vašut <marex@denx.de> Secure and flexible boot with U-Boot bootloader

Objective

Tips to build a system, which. . .

I . . . is resistant against storage data corruption

I . . . is resistant against offline tampering

I . . . is resistant against data extraction

Marek Vašut <marex@denx.de> Secure and flexible boot with U-Boot bootloader

The boot process

That’s easy ... not:

I Power on or Reset

I CPU starts executing from predefined address

I Bootloader is started

I Kernel is started

I Root filesystem is used

Lots of things happen inbetween, that’s where the problems are.

Marek Vašut <marex@denx.de> Secure and flexible boot with U-Boot bootloader

Power on or Reset

Hardware magic happens before CPU starts executing code:

I All relevant components are put into reset

I Reset brings components into defined state

I CPU start executing code after released from reset

. . . but . . .

I There are multiple types of reset

I Well defined post-reset state allows for proper analysis

I Not well defined post-reset state is source of problems

Make sure your hardware is reliable in the first place!

Marek Vašut <marex@denx.de> Secure and flexible boot with U-Boot bootloader

Tip: Reset routing

I Recurring problem!

I Reset is not connected properly to all components

I Often seen with MTD devices (SPI NOR) or SD/MMC cards
I Example: CPU boots from SPI NOR

I Software does a PP operation and feeds SPI NOR with data
→ Reset happens
⇒ Board does not boot – WHY?
⇒ Data corruption might happen – WHY?

I Naive solution: Send RESET opcode in software (FAILS!)
I Solution: CPU has reset output

I Connect it to the boot media reset input

Marek Vašut <marex@denx.de> Secure and flexible boot with U-Boot bootloader

Tip: Other boot media

I SD/eSD/MMC/eMMC:
I Verify EOL behavior

→ Must indicate bad blocks, not emit bad data
I Baked firmware problems

I NAND:
I First EB often guaranteed to be OK by vendor

I This might not extend to reprogramming of the first EB.
I Read the datasheet carefully !

I First page is 1/2/4 KiB big ⇒ U-Boot SPL
I MLC NAND has even worse problems than SLC NAND

Marek Vašut <marex@denx.de> Secure and flexible boot with U-Boot bootloader

CPU executes code

I First code running on the CPU

I Might be executing from within the CPU (BootROM)

I Might be executing from external memory (NOR, FPGA, . . .)

BootROM:

I Facilitates loading from non-trivial media
(SPI NOR, SD/MMC, RAW NAND, USB, Network, . . .)

I Might provide facilities for verified and encrypted boot

I Often closed source

I Usually cannot be updated with fixes (ROM)

Marek Vašut <marex@denx.de> Secure and flexible boot with U-Boot bootloader

U-Boot SPL

U-Boot SPL:

I First user-supplied code running

I Smaller size than U-Boot

I Function varies on per-device basis

I Does basic hardware initialization

I Loads payload from media, verifies it and executes it
→ Payload can be either U-Boot, Linux, . . .

RAW NAND specifics:

I UBI doesn’t fit into first 4KiB of NAND

I U-Boot SPL does ECC, but doesn’t update NAND

I Multiple copies of U-Boot in NAND and update them

I Better: Store U-Boot in NOR, kernel and FS in NAND

Marek Vašut <marex@denx.de> Secure and flexible boot with U-Boot bootloader

U-Boot

I The size limits of SPL are almost non-existent

I Full support for filesystems (ext234, reiserfs, vfat. . .)

I UBI and UBIFS support for NAND

I Supports verification and encryption

I fitImage support

Marek Vašut <marex@denx.de> Secure and flexible boot with U-Boot bootloader

Partial summary (1/3)

I Make sure your HW starts from a defined state

I Always verify the next payload

I Boot from reliable boot media (not RAW NAND)

I Never place anything important into RAW NAND

Marek Vašut <marex@denx.de> Secure and flexible boot with U-Boot bootloader

Common kernel image types

I zImage
I Prone to silent data corruption, which can go unnoticed
I Contains only kernel image
I In widespread use

I uImage (legacy)
I Weak CRC32 checksum
I Contains only kernel image
I In widespread use

I fitImage
I Configurable checksum algorithm
I Can be signed
I Contains arbitrary payloads (kernel, DTB, firmware. . .)
I There is more !
I Not used much :-(

Marek Vašut <marex@denx.de> Secure and flexible boot with U-Boot bootloader

The fitImage in detail

I Successor to uImage

I Descriptor of image contents based on DTS

I Can contain multiple files (kernels, DTBs, firmwares. . .)

I Can contain multiple configurations (combo logic)

I New image features can be added as needed

I Supports stronger csums (SHA1, SHA256. . .)

⇒ Protection against silent corruption

I U-Boot can verify fitImage signature against public key

⇒ Protection against tampering

I Linux build system can not generate fitImage :-(

I Yocto can not generate fitImage yet :-)

Marek Vašut <marex@denx.de> Secure and flexible boot with U-Boot bootloader

uImage vs. fitImage: Creation
/dts-v1/;

/ {

description = "Linux kernel";

#address-cells = <1>;

images {

kernel@1 {

description = "Linux kernel";

data = /incbin/("./arch/arm/boot/zImage");

arch = "arm";

os = "linux";

type = "kernel";

compression = "none";

load = <0x8000>;

entry = <0x8000>;

hash@1 {

algo = "sha1";

};

};

};

configurations {

default = "conf@1";

conf@1 {

description = "Boot Linux kernel";

kernel = "kernel@1";

hash@1 {

algo = "sha256";

};

};

};

};

$ mkimage -f fit-image.its fitImage

$ mkimage -A arm -O linux -T kernel -C none -a 0x8000 -e 0x8000 -n "Linux kernel"

-d arch/arm/boot/zImage uImage

Marek Vašut <marex@denx.de> Secure and flexible boot with U-Boot bootloader

uImage vs. fitImage: Boot

uImage => load mmc 0:1 ${loadaddr} uImage

uImage => bootm ${loadaddr}

fitImage => load mmc 0:1 ${loadaddr} fitImage

fitImage => bootm ${loadaddr}

I uImage is easier to construct

I uImage does not need fit-image.its file

I uImage boot command is the same as fitImage one

uImage wins thus far. . .

Marek Vašut <marex@denx.de> Secure and flexible boot with U-Boot bootloader

uImage vs. fitImage: Device Tree Blob

...

/ {

images {

...

+ fdt@1 {

+ description = "Flattened Device Tree blob";

+ data = /incbin/("./arch/arm/boot/dts/imx28-m28evk.dtb");

+ type = "flat_dt";

+ arch = "arm";

+ compression = "none";

+ hash@1 {

+ algo = "sha256";

+ };

+ };

...

};

configurations {

conf@1 {

...

+ fdt = "fdt@1";

...

};

};

};

Marek Vašut <marex@denx.de> Secure and flexible boot with U-Boot bootloader

uImage vs. fitImage: Boot with DT

uImage => load mmc 0:1 ${loadaddr} uImage

uImage => load mmc 0:1 ${fdtaddr} imx28-m28evk.dtb

uImage => bootm ${loadaddr} - ${fdtaddr}

fitImage => load mmc 0:1 ${loadaddr} fitImage

fitImage => bootm ${loadaddr}

I fitImage allows an update of all boot components at the same time

I fitImage protects the DTB with a strong checksum (hash node)

I fitImage does not require change of the boot command here

Marek Vašut <marex@denx.de> Secure and flexible boot with U-Boot bootloader

fitImage: Multiple configurations

...

/ {

images {

kernel@1 {};

fdt@1 {};

fdt@2 {};

...

};

configurations {

conf@1 {

kernel = "kernel@1";

fdt = "fdt@1";

...

};

conf@2 {

kernel = "kernel@1";

fdt = "fdt@2";

...

};

};

};

=> bootm ${loadaddr}#conf@2

=> bootm ${loadaddr}:kernel@2

I fitImage can carry multiple predefined configurations

I fitImage allows for execution of config using the # (HASH)

I fitImage allows for direct execution of image using the : (COLON)

Marek Vašut <marex@denx.de> Secure and flexible boot with U-Boot bootloader

fitImage: Firmware blobs

...

/ {

images {

...

+ firmware@1 {

+ description = "My FPGA firmware";

+ data = /incbin/("./firmware.rbf");

+ type = "firmware";

+ arch = "arm";

+ compression = "none";

+ hash@1 {

+ algo = "sha256";

+ };

+ };

...

};

};

=> imxtract ${loadaddr} firmware@1 ${fwaddr}

=> fpga load 0 ${fwaddr}

I fitImage can contain multiple arbitrary firmware blobs

I fitImage protects them with strong checksums

Marek Vašut <marex@denx.de> Secure and flexible boot with U-Boot bootloader

fitImage: Listing image content

=> iminfo ${loadaddr}

Checking Image at 10000000 ...

FIT image found

FIT description: Linux kernel and FDT blob for mcvevk

Created: 2014-09-22 15:37:52 UTC

Image 0 (kernel@1)

Description: Linux kernel

Created: 2014-09-22 15:37:52 UTC

Type: Kernel Image

Compression: uncompressed

Data Start: 0x100000d8

Data Size: 3363584 Bytes = 3.2 MiB

Architecture: ARM

OS: Linux

Load Address: 0x00008000

Entry Point: 0x00008000

Hash algo: crc32

Hash value: 5c7efdb5

Image 1 (fdt@1)

Description: Flattened Device Tree blob

Created: 2014-09-22 15:37:52 UTC

Type: Flat Device Tree

...

Default Configuration: ’conf@1’

Configuration 0 (conf@1)

Description: Boot Linux kernel with FDT blob

Kernel: kernel@1

FDT: fdt@1

Checking hash(es) for FIT Image at 10000000 ...

Hash(es) for Image 0 (kernel@1): crc32+

Hash(es) for Image 1 (fdt@1): crc32+

Marek Vašut <marex@denx.de> Secure and flexible boot with U-Boot bootloader

Partial summary (2/3)

I fitImage can protect all artifacts needed during boot

I fitImage can batch all files into one
⇒Essential boot files can be updated at once

I fitImage supersedes uImage with flexibility and extensibility

I fitImage is much less prone to silent corruption of it’s payloads

Marek Vašut <marex@denx.de> Secure and flexible boot with U-Boot bootloader

fitImage: Signed image support

I Tampering protection for boot artifacts
I Attach signature to fitImage image or config node

I SHA-1 + RSA-2048
I SHA-256 + RSA-2048
I SHA-256 + RSA-4096

I U-Boot verifies the signature against a public key

I Public key must be stored in read-only location

Marek Vašut <marex@denx.de> Secure and flexible boot with U-Boot bootloader

fitImage: Signed image implementation

This is five step process:

I Enable control FDT support in U-Boot and make use of it

I Generate cryptographic material (using OpenSSL)

I Generate the control FDT with public key in it

I Assemble U-Boot that can verify the fitImage signature

I Update U-Boot and test the setup. . .

Marek Vašut <marex@denx.de> Secure and flexible boot with U-Boot bootloader

fitImage: U-Boot tweaks

I CONFIG RSA – support for RSA signatures

I CONFIG FIT SIGNATURE – support for signed fitImage

I CONFIG OF CONTROL – support for control DT in U-Boot

Marek Vašut <marex@denx.de> Secure and flexible boot with U-Boot bootloader

fitImage: Generate cryptomaterial

I Our cryptomaterial goes into key dir="/work/keys/"

I The shared name of the key is key name="my key"

I Generate a private signing key (RSA2048):
$ openssl genrsa -F4 -out \
"${key dir}"/"${key name}".key 2048

I Generate a public key:
$ openssl req -batch -new -x509 \
-key "${key dir}"/"${key name}".key \
-out "${key dir}"/"${key name}".crt

Marek Vašut <marex@denx.de> Secure and flexible boot with U-Boot bootloader

fitImage: Installing keys into U-Boot

Example of control FDT (u-boot.dts):

/dts-v1/;

/ {

model = "Keys";

compatible = "denx,m28evk";

signature {

sig@0 {

required = "conf"; /* or "image" */

algo = "sha256,rsa2048";

key-name-hint = "my_key";

};

sig@1 {...};

...

};

};
I The my key in key-name-hint node must be ${key name}
I There can be multiple keys in the control DT

I The u-boot.dtb must be read-only on the device

Marek Vašut <marex@denx.de> Secure and flexible boot with U-Boot bootloader

fitImage: Add signature node

Example of signature node in fitImage ITS (fit-image.its):

...

/ {

...

configurations {

conf@1 {

...

hash@1 {...};

+ signature@1 {

+ algo = "sha256,rsa2048";

+ key-name-hint = "my_key";

+ sign-images = "kernel,fdt";

+ };

...

};

};

};

I The my key in key-name-hint node must be ${key name}

Marek Vašut <marex@denx.de> Secure and flexible boot with U-Boot bootloader

fitImage: Assembling the setup

I Assemble control FDT for U-Boot with space for public key:
$ dtc -p 0x1000 u-boot.dts -O dtb -o u-boot.dtb

I Generate fitImage with space for signature:
$ mkimage -D "-I dts -O dtb -p 2000" \
-f fit-image.its fitImage

I Sign fitImage and add public key into u-boot.dtb:
$ mkimage -D "-I dts -O dtb -p 2000" -F \
-k "${key dir}" -K u-boot.dtb -r fitImage

I Signing subsequent fitImage:
$ mkimage -D "-I dts -O dtb -p 2000" \
-k "${key dir}" -f fit-image.its -r fitImage

I Now rebuild U-Boot, update both U-Boot and u-boot.dtb

on the board and verify that U-Boot correctly starts.

Marek Vašut <marex@denx.de> Secure and flexible boot with U-Boot bootloader

fitImage: Testing the setup

Load the signed fitImage and use bootm start (or iminfo):

I Verification passed (+ sign):
Verifying Hash Integrity ...

sha256,rsa2048:my key+ OK

I Verification failed (- sign):
Verifying Hash Integrity ...

sha256,rsa2048:my key- Failed to verify required

signature ’key-my key’

Marek Vašut <marex@denx.de> Secure and flexible boot with U-Boot bootloader

Partial summary (3/3)

I Signed fitImage looks a bit difficult to assemble

I Difficult part is done only once

I The u-boot.dtb must be in read-only storage

Marek Vašut <marex@denx.de> Secure and flexible boot with U-Boot bootloader

Loading the kernel image

I Use the load command for all but NAND

I Use the ubi*/ubifs* commands for NAND

I The fitImage will assure that the image was not tampered with

Marek Vašut <marex@denx.de> Secure and flexible boot with U-Boot bootloader

In Linux

I Use Linux Integrity framework (IMA/EVM)

I Use UBI/UBIFS for RAW flash-based media

Marek Vašut <marex@denx.de> Secure and flexible boot with U-Boot bootloader

UBI/UBIFS

I UBI is not full solution against silent corruption

I UBI does not actively refresh the content on flash

⇒ Irrepairable corruption can still happen!

⇒ Implement a ”scrubber” job:
$ find / -exec cat {} > /dev/null 2>&1

! UBI does not support MLC NAND

Marek Vašut <marex@denx.de> Secure and flexible boot with U-Boot bootloader

Encryption support

I Encryption of U-Boot (using BootROM)
I Encryption of U-Boot environment

I U-Boot has CONFIG ENV AES
I Implement env aes cbc get key

I Encryption of kernel image
I U-Boot has CONFIG CMD AES
I Use aes dec

I Encryption of filesystem (use dm crypt)

Marek Vašut <marex@denx.de> Secure and flexible boot with U-Boot bootloader

The End

Thank you for your attention!

Contact: Marek Vasut <marex@denx.de>

Marek Vašut <marex@denx.de> Secure and flexible boot with U-Boot bootloader

