Geert Uytterhoeven
geert@linux-m68k.org

Glider bvba

Tuesday, March 24

© Copyright 2015 Glider bvba @Iider.be

About Me
Introduction
Hardware

Linux
DT

Implementation
Platform Code
Device Drivers

Caveats
Thanks

Questions

(1)
[3K J
(A

2/55

1994 Linux/m68k on Amiga
1997 Linux/PPC on CHRP

1997 FBDev
2006 Linux on PS3/Cell SONY

2013 Renesas ARM-based SoCs RENESAS

(1)
[3K J
&

3/55

» On
Suspended
Hibernated
» Off

v

v

(1)
[3K J
&

4/55

NINE- TO—FIVE LTD

System-Centric Power Management
Building: Night Time

NINE-TO- FIVE LTD

BRH 87 60

BRH 8750

"BRH 87.50

" BRH 8750

EBRH E7.508RH &7 50

Eat-in Kitchen

8RH'STS) BRHET.SD BRH E7.50° BRH 8750

%A—VA—V/)—VA—(
T

A

S
~

Forr iving

. FoiMe. Cining

Fantry . -
- S —— —
B
o | o~ .
& s] — Family | |
Laundry \; E“‘;]
Steqe —F Entrance’ o~ I

I 1/2 Bath
A==t |
(BRRETE | BRHETE CERMETR) SRR &5

A

BRH 87 50

BRH 750

BRH.67 .50

7/55

Commu
nication
» Parts become active when needed

» Parts become inactive when no longer needed

(1)
[3K J
&

8/55

» Devices can be Power Managed by Controlling Power
» Multiple Power Domains / Power Areas
» Power Controllers

» Devices can be Power Managed by Controlling Clocks

» Synchronous logic driven by clock
» Gating the clock saves power

» Clock Controllers

(1)
[3K J
&

14/55

» Per-device
» Device groups

» Flat
» Tree
» Complex hierarchy

N
08

L]
o I
000

15/55

» PM Domains not Power Domains
» Not limited to Power Domains / Power Areas

» PM Domain = Collection of devices treated similarly w.r.t.
power management

One single power area

One clock controller for power-managing per-device clocks

Combination

Firmware (e.g. ACPI)

vV vy vy VvVYyy

(1)
[3K J
(A

16/55

Generic 1/0 PM Domains (genpd)

Generic implementations of various device PM callbacks
Supports controlling an entire PM Domain

Supports controlling a single device in a PM Domain
Supports PM Subdomains

select PM_GENERIC_DOMAINS if PM

v

v

v

v

v

v

Note: Other PM Domains (e.g. ACPI)

(1)
[3K J
&

17/55

» Allows I/O devices to be put into energy-saving states
» After a specified period of inactivity

» Woken up in response to a hardware-generated wake-up
event or a driver’s request

» Used to have its own config symbol
(CONFIG_PM_RUNTIME)

» Always enabled if CONFIG_PM_SLEEP is enabled since
v3.19

(1)
[3K J
(A

18/55

» Cpuidle: Multiple CPU idle levels
» Cpufreq: CPU frequency and voltage scaling
» Cfr. breathing, heartbeat, . ..

= Introduction to Kernel Power Management by Kevin Hilman

(1)
[3K J
&

19/55

$ cat /sys/kernel/debug/pm_genpd/pm_genpd_summary

(CONFIG_PM_DEBUG=y and CONFIG_PM_ADVANCED_DEBUG=y)

domain status slaves
/device runtime status

adsu off

a3sg off

a3sm on

a3sp on
/devices/platform/e6600000.pwm suspended
/devices/platform/e6c50000.serial active
/devices/platform/e6850000.sd active
/devices/platform/e6bd0000.mmc active

ads on a3sp, a3sm, a3sg
/devices/platform/e6900000.irgpin active
/devices/platform/e6900004.irgpin active
/devices/platform/e6900008.irgpin active
/devices/platform/e690000c.irgpin active
/devices/platform/e%9a00000.ethernet active

a3rv off

adr on a3rv
/devices/platform/f££20000.1i2¢c suspended
/devices/platform/f£f£80000.timer active

d4 on

admp off
/devices/platform/felf0000.sound suspended

adlc off

cbh on a4lc, a4dmp, d4, adr,
/devices/platform/e6050000.pfc unsupported
/devices/platform/e6138000.timer suspended

ads,

adsu

20/55

/* struct dev_pm_ops - device PM callbacks =/
struct dev_pm_ops {
int (xprepare) (struct device xdev);
void (xcomplete) (struct device xdev);
int (*suspend) (struct device xdev);
int (*resume) (struct device =*dev);

int (xruntime_suspend) (struct device xdev);
int (xruntime_resume) (struct device =*dev);

bi

Can be:

» Bus specific (struct bus_type.pm)
Device driver specific (struct device_driver.pm)
Device class specific (struct class.pm)
Device type specific (struct device_type.pm)
PM Domain specific (struct dev_pm_domain.pm)
Platform specific

vV vyVvyVvyy

* Power domains provide callbacks that are executed during
* system suspend, hibernation, system resume and during
* runtime PM transitions along with subsystem-level and
* driver-level callbacks.
*/
struct dev_pm_domain {
struct dev_pm_ops ops;
void (xdetach) (struct device xdev, bool power_off);

bi

» Used by Devices (struct device.pm_domain)
> Provided by:

» Generic PM Domain (struct generic_pm_domain.domain)
» Platform code, Legacy Clock Domains, VGA switcheroo
» ACPI

struct dev_power_governor {
bool (*power_down_ok) (struct dev_pm domain xdomain);
bool (*stop_ok) (struct device =*dev);

bi

struct gpd_dev_ops {
int (xstart) (struct device xdev);
int (xstop) (struct device =xdev);
int (*save_state) (struct device =dev);
int (xrestore_state) (struct device =xdev);
bool (xactive_wakeup) (struct device x*dev);

#define GENPD_FLAG_PM_CLK (1lU << 0) /+ Use PM clk =/

struct generic_pm_domain {

struct dev_pm_domain domain; /* PM domain ops */
struct list_head gpd_list_node; /* Global list =x/

const char xname;
enum gpd_status status; /+ Current state =/

int (xpower_off) (struct generic_pm_domain *domain);
s64 power_off latency_ns;

int (xpower_on) (struct generic_pm_domain *domain);
s64 power_on_latency_ns;

struct gpd_dev_ops dev_ops;

int (xattach_dev) (struct generic_pm_domain *domain,
struct device =dev);

void (xdetach_dev) (struct generic_pm_domain *domain,
struct device xdev);

unsigned int flags; /* Bit field of configs =/

void pm_genpd_init (struct generic_pm_domain =*genpd,
struct dev_power_governor *gov,
bool is_off);

int pm_genpd_add_subdomain (struct generic_pm_domain xgenpd,
struct generic_pm_domain *new_subdomain) ;

int pm_genpd_remove_subdomain (struct generic_pm_ domain xgenpd,
struct generic_pm_domain xtarget);

struct genpd_onecell_data {
struct generic_pm_domain *xdomains;
unsigned int num_domains;

bi

int of_genpd_add_provider_simple (struct device_node =xnp,
struct generic_pm_domain *genpd);
int of_genpd_add_provider_onecell (struct device_node *np,
struct genpd_onecell_data =*data);
void of_genpd_del_provider (struct device_node =*np);
struct generic_pm_domain *xof_genpd_get_from provider (
struct of_phandle_args *genpdspec) ;

= Use DT!

int pm_genpd_attach_cpuidle (struct generic_pm_domain *genpd,
int state);

int pm_genpd_name_attach_cpuidle (const char xname, int state);

int pm_genpd_detach_cpuidle (struct generic_pm_domain xgenpd) ;

int pm_genpd_name_detach_cpuidle (const char xname);

So far used only by legacy (non-DT) SH-Mobile AP4 (sh7372),
which is scheduled for removal in v4.1. ..

(1)
[3K J
&

27/55

» Preferred way to describe hardware PM Domains

» PM Domain Providers are registered by platform code
» PM Domain Consumers are registered by PM Domain core

» Introduced last year, not that many users yet:

» Freescale i.MX6

» Renesas SH-Mobile/R-Mobile
» Samsung Exynos

» ST-Ericsson Ux500

However, more to come soon!

(1)
[3K J
(A

28/55

» Required properties:

#power-domain-cells : Number of cells in a PM domain
specifier;

» 0 for nodes representing a single PM domain

» 1 for nodes providing multiple PM domains (power
controllers)

» can be any value as per provider DT bindings

» Example:
power: power-controller@12340000 {
compatible = "foo,power-controller";
reg = <0x12340000 0x1000>;
#power—-domain-cells = <1>;

(1)
[3K J
&

Documentation/devicetree/bindings/power/power_domain.txt
29/55

» Required properties:

power-domains : A phandle and PM domain specifier as
defined by bindings of the power
controller specified by phandle.

» Example:

leaky-device@12350000 {
compatible = "foo,i-leak-current";
reg = <0x12350000 0x1000>;
power-domains = <&power 0>;

Documentation/devicetree/bindings/power/power_domain.txt

pd_1lcdO:

lcdO-power-domain@10023C80 {

compatible

= "samsung, exynos4210-pd";

reg =
#power—-domain-cells =

<0x10023C80 0x20>;

<0>;

i
dsi_0: dsi@11C80000 {

compatible = "samsung,exynos4210-mipi-dsi";
reg = <0x11C80000 0x10000>;
interrupts = <0 79 0>;
power-domains = <&pd_lcd0>;
phys = <&mipi_phy 1>;
phy-names = "dsim";

clocks = <&clock CLK_DSIMO>,
clock-names = "bus_clk",
status = "disabled";
#address-cells = <1>;
#size-cells = <0>;

<sclock CLK_SCLK_MIPIO>;
"pll_clk";

}i

arch/arm/boot/dts/exynos4.dtsi

parent:

child:

power-controller@12340000 {

compatible = "foo,power-controller";

reg = <0x12340000 0x1000>;
#power—-domain-cells = <1>;

power—-controller@12341000 {
compatible = "foo,power-controller";
reg = <0x12341000 0x1000>;
power-domains = <&parent 0>;
#power-domain-cells = <1>;

Documentation/devicetree/bindings/power/power_domain.txt

sysc: system-controller@e6180000 {
compatible = "renesas,sysc-r8a7740", "renesas,sysc-rmobile";
reg = <0xe6180000 0x8000>, <0xe6188000 0x8000>;

pm-domains {
pd_c5: c5 {
#address-cells = <1>;
#size-cells = <0>;
#power-domain-cells = <0>;

pd_ads: a4s@1l0 {
reg = <10>;
#address-cells = <1>;
#size-cells = <0>;
#power-domain-cells = <0>;

pd_a3sp: a3sp@ll {
reg = <11>;
#power-domain-cells = <0>;

bi

pd_adsu: adsul20 {
reg = <20>;
#power-domain-cells = <0>;

bi

Documentation/devicetree/bindings/power/renesas, sysc-rmobile.txt

33/55

static int my_power_ off (struct generic_pm domain xgenpd);
static int my_power_on(struct generic_pm_domain =*genpd) ;

static __init int init_my_power_domain (void)
{

struct device_node *np;

for_each_compatible_node (np, NULL, "my-vendor,my-power")
struct generic_pm_domain *pd = ...;

pd->name = np->name;

pd->power_off = my_power_off;

pd->power_on = my_power_on;

pm_genpd_init (pd, NULL, false);

of_genpd_add_provider_simple (np, pd);
}

return 0;

arch_initcall (init_my_power_domain);

{

static __init int init_my_power_controller (void)
{

struct device_node #*np;

for_each_compatible_node (np, NULL, "my-vendor,my-power")

struct genpd_onecell_data xdata = ...;
data.domains = ...;

data.num_domains = ...;

for (i = 0; i < data.num_domains; i++)

pm_genpd_init (data.domains[i], NULL, false);
of_genpd_add_provider_onecell (np, data);
}

return 0;

arch_initcall (init_my_power_controller);

{

static int my_attach_dev (struct generic_pm_domain *domain,
struct device =*dev)
{

pm_clk_create (dev);

pm_clk_add(dev, ...); /* Find and add module clock =/

static void my_detach_dev (struct generic_pm_domain xdomain,
struct device xdev)
{
pm_clk_destroy (dev);

static __init int init_my_clock_domain (void)

{

pd->attach_dev = my_attach_dev;
pd->detach_dev = my_detach_dev;
/* dev_ops. {start,stop} = pm_clk_{suspend, resume} ()
pd->flags = GENPD_FLAG_PM_CLK;

*/

Ideally, device drivers should not be aware of PM Domains
Abstracted by Runtime PM

v

v

v

Power Domains: Never accessed directly by drivers

» Module needs to be powered when active
» Automatic, Runtime PM

v

Clock Domains: Who is in charge of the clocks(s)?

» Functional clocks

Interface clocks

Clock-agnostic (hardware is just synchronous?)
Clock rate

vV vy VvVYyy

(1)
[3K J
&

37/55

CLK
CTRL

L

ouTt

/o

» Needs power
» Clock-
agnostic

» Input may
need clock

(1)
[3K J
&

38/55

CTRL CLKGEN

LJ

SS0

SS1

S§S2

» Needs
power, clock

» Needs to
know clock
rate

» Who is in
charge of
the clock?

g
oo
o

39/55

CAPTURE

CLK
CTRL

I

PLAYBACK

Capture at 32
kHz

Playback at
441 kHz

Audio
processing

Needs power,
clock

Driver is in
charge of the
clocks

(1)
[3K J
&

40/55

» Runtime PM is disabled by default
» Driver needs minimal Runtime PM:

#include <linux/pm_runtime.h>

static int my_probe (struct platform device xpdev)

{

pm_runtime_enable (&pdev->dev) ;
pm_runtime_get_sync (&pdev->dev) ;

}

static int my_remove (struct platform_device xpdev)

{

pm_runtime_put (&pdev->dev) ;
pm_runtime_disable (&pdev->dev) ;

» Better: more advanced Runtime PM

» Call pm_runtime_put () after becoming inactive,
» Call pm_runtime_get_sync () before becoming active.

» May be subsystem-specific

» E.g. SPI core handles this automatically if
spi_master.auto_runtime_pm == true

» Provide your own struct dev_pm_ops

(1)
[3K J
&

42/55

v

Unused PM Domains will be powered down by the genpd
core (cfr. clocks)
If you make a mistake, something will break, eventually

» Incorrect description in DT
» Driver / subsystem without / with incorrect Runtime PM
> ...

v

v

Shared PM Domain: it may work by accident
Wake-up

v

(1)
[3K J
&

43/55

CLK
CTRL

*

ADDRESS
DECODER

I

&

44/55

bsc:

Vi

bus@fecl0000 {

compatible = "simple-bus";
#address-cells = <1>;
#size-cells = <1>;

ranges = <0 0 0x20000000>;

ethernet@10000000 {
compatible = "smsc,lan9220", "smsc,1an9115";
reg = <0x10000000 0x100>;

X Missing BSC clock, broke when CCF was introduced

Bad workaround: add BSC clock to ethernet node

X Even more broken with the advent of PM Domains

(1)
&

45/55

bsc: busfecl0000 {

compatible = "simple-bus";
#address-cells = <1>;
#size-cells = <1>;

ranges = <0 0 0x20000000>;
clocks = <&zb_clk>;
power—-domains = <&pd_ads>;

ethernet@10000000 {

compatible = "smsc,1lan9220", "smsc,lan9115";
reg = <0x10000000 0x100>;

bi

v Ethernet driver now has minimal Runtime PM support

v~ Runtime PM takes into account parent/child relationship

X Without a BSC driver, Runtime PM stays disabled, and the
PM Domain is not powered on.

(1)
[3K J
&

46/55

bsc: bus@fecl0000 {
compatible = "renesas,bsc-sh73a0", "renesas,bsc",
"simple-pm-bus";

clocks = <&zb_clk>;
power-domains = <&pd_ads>;

ethernet@10000000 {
compatible = "smsc,1lan9220", "smsc,l1lan9115";

bi
bi

v Ethernet driver now has minimal Runtime PM support
v Runtime PM takes into account parent/child relationship

v Generic "simple-pm-bus" driver calls
pm_runtime_enable () and populates children

= PM Domain is managed correctly

(1)
[3K J
&

47/55

DT describes the hardware, not the behavior

. » This PM Domain must not be powered down
» "always—on" property in DT
» Prohibits a proper future solution

. » Ask yourself: why must this PM Domain not be powered
down?
» Reference PM domain from (new) device node that uses it
» Have a driver or platform code that powers up the PM
domain (and keeps it powered up)

(1)
[3K J
(A

48/55

» Scan DT topology to find PM Domains containing special
devices
» Handle in platform code:
» Protect against runtime suspend:

pm_genpd_init (..., &pm_domain_always_on_gov, ...);

» Protect against system suspend:

static int power_off_always_busy (void)

{
/* This domain should not be turned off */
return -EBUSY;

}

genpd->power_off = power_off_always_busy;

(1)
[3K J
&

» Hopefully a temporary solution!

49/55

» Scan DT for device nodes under " /cpus"
» Avoid power down while the CPU is busy
» Optional: Handle cpuidle

no_console_suspend

/sys/module/printk/parameters/console_suspend

chosen/stdout-path

vyVVvyyvyy

struct device_node *of_stdout

static int power_off_console_busy (void)

{
/* Keep the PM Domain on if "no_console_suspend" is set =/
return console_suspend_enabled ? 0 : -EBUSY;

}

genpd->power_off = power_off_ console;

» arch/arm/kernel /hw_breakpoint.c accesses debug
registers unconditionally

» Add minimal device node for Coresight-ETM
» Scan DT for "arm, coresight-etm3x"

» No driver for memory controller
» Add minimal device node for memory controller
» Scan DT for known memory controllers

(1)
[3K J
&

51/55

» Initialized too early, not part of PM Domain
» Not a platform device, no Runtime PM

» DMA mappings are typically created during device probe

» Runtime PM only knows about active devices, not about
active DMA mappings
» When to suspend/resume IOMMUs?

(1)
[3K J
(A

52/55

» Renesas Electronics Corporation, for contracting me to
do Linux kernel work,

» The Linux Foundation, for organizing this conference and
giving me the opportunity to present here,

» The Renesas Linux Kernel Team, for insights and
discussions,

» The Linux Kernel Community, for having so much fun
working together towards a common goal.

(1)
[3K J
(A

53/55

Documentation/power/devices.txt
Documentation/power/runtime_pm.txt
Documentation/devicetree/bindings/power/power_domain.txt
include/linux/pm.h
include/linux/pm_domain.h
include/linux/pm_runtime.h
include/linux/pm_clock.h
drivers/base/power/domain.c
drivers/base/power/domain_governor.c
drivers/base/power/runtime.c
drivers/base/power/clock_ops.c

	About Me
	Introduction
	Hardware
	Linux
	Implementation
	DT
	Platform Code
	Device Drivers

	Caveats
	Thanks
	Questions

