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● Image Signal Processor
● Raw camera sensor
● Lens voice coil



  

Raw sensors

● Raw sensors have little processing logic in the 
sensor itself
– Analogue and digital gain but not much more

This is how white looks like! -->



  

Image signal processors

● Process the image
for viewing

After ISP processing white
looks like this --->



  

Video4Linux and Media controller

● Video4Linux (V4L2) is the Linux API for capturing 
images
– Video capture cards

– USB webcams

– Cameras in embedded devices

● Media controller is a control interface for complex 
media devices
– Image pipeline discovery and configuration
– Device discovery
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Probing

● Each driver is
probed separately

● How to tell drivers they all are part of the same 
media device?

PCI, AMBA etc.
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Media device setup

1.media_device_init()

2.v4l2_device_register()

3.video_register_device()

5.v4l2_device_register_subd
ev(isp)

6.v4l2_register_subdev_nod
es()

7.media_device_register()

4.v4l2_device_register_subdev(
sensor)

Media device driver sensor driver



V4L2 async



  

V4L2 async

● The V4L2 async framework facilitates sub-
device registration

● V4L2 sub-device device node creation and 
media device registration postponed after probe

● To do its job, the V4L2 async framework makes 
use of firmware provided information



  

V4L2 async example (ISP)

device base ISP driver ISP DT node sensor DT node V4L2 async async sub-device li
st async notifier list

probe(dev)

parse local endpoints

of_graph_get_remote_port_parent(endpoint)

v4l2_async_register_notifier(notifier)

Look for sub-devices mat
ching the notifier list

No match found

Add ISP notifier



  

V4L2 async (sensor)

device base ISP driver sensor driver sensor DT node V4L2 async async notifier list

probe(dev)

v4l2_of_parse_endpoint()

endpoint properties

v4l2_async_register_subdev(sd)

Look for a notifier matchi
n the sub-device

Found it!

notifier->bound()

notifier->complete()



  

Device tree



  

Device tree

● System hardware description in a human readable format
● Originates from Sparc / Open Firmware
● Primarily used on embedded systems

– ARM

– Also PowerPC, Sparc and x86

● Tree structure
– Nodes

– Properties

● Source code compiled into binary before use



Device Tree standard and bindings

● Device Tree specification maintained by 
devicetree.org
– Syntax and some semantics

● Bindings define the interface between the firmware 
and the software
– Bindings are Operating System specific

– Linux Device tree binding documentation part of the Linux 
kernel source

– FreeBSD developers appear to be converging towards 
using Linux DT bindings



  

Device tree graphs

● phandle properties can be used to refer to 
other nodes in the tree

● Port is an interface in a device (as in an IP 
block)

● Endpoint describes one end of a connection to 
a port [7]



  

Sensor node

&i2c2 {
smia_1: camera@10 {

compatible = "nokia,smia";
reg = <0x10>;
/* No reset gpio */
vana-supply = <&vaux3>;
clocks = <&isp 0>;
clock-frequency = <9600000>;
nokia,nvm-size = <(16 * 64)>;
port {

smia_1_1: endpoint {
link-frequencies = /bits/ 64 <199200000 210000000 499200000>;
clock-lanes = <0>;
data-lanes = <1 2>;
remote-endpoint = <&csi2a_ep>;

};
};

};
};

source: arch/arm/boot/dts/omap3-n9.dts



  

ISP node board specific part

&isp {
vdd-csiphy1-supply = <&vaux2>;
vdd-csiphy2-supply = <&vaux2>;
ports {

port@2 {
reg = <2>;
csi2a_ep: endpoint {

remote-endpoint = <&smia_1_1>;
clock-lanes = <2>;
data-lanes = <1 3>;
crc = <1>;
lane-polarities = <1 1 1>;

};
};

};
};

source: arch/arm/boot/dts/omap3-n9.dts



  

OF graph API

● Parse port and endpoint nodes under device 
nodes

● Enumerate over endpoints
● Obtain remote endpoint

– Based on the phandle value



  

ACPI



  

ACPI

● Advanced Configuration and Power Interface
● Operating system independent
● Origins in x86 and PC

– Increasingly used in embedded systems

● Device discovery and enumeration
● Power management
● ACPI methods

– Runnable code

– ACPI virtual machine



ACPI

● ACPI specifications developed by UEFI Forum
– Roughly one specification per year

● What do you do if you need to add a new kind 
of a device?
– A new ACPI specification?



  

ACPI Device Specific Data

● _DSD object type part of ACPI 5.1 and later
– Key-value pairs (property extension) and

– Tree structures (hierarchical data extension)

● Together property and data extension could be 
used to implement very similar functionality to 
Devicetree

● _DSD property registry [6]
– Light-weight approach for registering _DSD properties



  

fwnode property API

● Access properties independently of underlying 
firmware implementation
– Device Tree

– ACPI

● Makes use of ACPI _DSD property extension 
[2]



Future work



  

Fwnode graph API

● Functionally the same as the OF graph API
– But is firmware independent

● Device tree implementation is used on Device 
tree

● Makes use of the _DSD hierarchical data 
extension [3] on ACPI

● Implementation at RFC level [4]



  

V4L2 fwnode API

● ”V4L2 ACPI support”
– Embedded systems with I²C components

– Requires both fwnode graph API and V4L2 fwnode API

● Same functionality as V4L2 OF API
● V4L2 fwnode and V4L2 OF fully interoperable

– Sub-device driver using V4L2 fwnode works with a media 
device driver using V4L2 OF

– and vice versa!

● RFC implementation available [5]



Flash

● LED flash devices supported
● But the kernel has no knowedge which sensor 

they're related to
– This is rather important if there are multiple 

cameras in the system, such as most mobile 
phones nowadays

● Standardise phandle property for this?



Camera module

● Currently there's no ”camera module” concept in 
the kernel (nor DT or ACPI)

● Camera module construction is important for the 
user space
– Which sensor and lens are related?

– What kind of lens is there?

– What's the voice coil spring constant?

– Is there an infra red filter? What kind of filter is it?
– What's the aperture size?



Camera module power on and 
power off sequences

● Regulators, clocks and / or GPIOs may be shared between 
module components

● Power on and power off sequences device component 
specific
– Which order and when each resource may be enabled?

– E.g. regulator and clock are enabled, then after 10 ms the reset 
GPIO can be lifted and the device is ready for use

● Requirements of both
lens and sensor must be
considered for module
power-up sequence
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lens
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vana

vdig

clock



Questions?
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Firmware logistics

Device tree ACPI
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ACPI camera example



  

ACPI camera example

    Scope (\_SB.PCI0.I2C2)
    {

Device (CAM0)
{
    Name (_DSD, Package () {

/* device specific data */
Package () {
    Package () { "compatible", Package () { "nokia,smia" } },
    Package () { "lanes", 4 },
    Package () { "clock-frequency", 24000000 },
},
/* data extension */
Package () {
    Package () { "ports", "PRTS" },
}

    })



ACPI camera example

    Name (PRTS, Package() {
/* data extension */
Package () {
    Package () { "port@0", "PRT0" },
}

    })
    Name (PRT0, Package() {

/* device specific data */
Package () {
    Package () { "port", 0 },
},
/* data extension */
Package () {
    Package () { "endpoint@0", "EP0" },
}

    })



ACPI camera example
    Name (EP0, Package() {

/* device specific data */
Package () {
    Package () { "endpoint", 0 },
    Package () { "clock-lanes", 0 },
    Package () { "data-lanes", Package () { 1, 2, 3, 4 } },
    Package () { "link-frequencies",

       Package () { 209600000, 342000000, 451200000 } },
    Package () { "remote-endpoint", Package() { \_SB.PCI0.ISP, 0, 0, 0 } },
},

    })
}

    }



ACPI ISP example
    Scope (\_SB.PCI0)
    {

Device (ISP)
{
    Name (_DSD, Package () {

/* data extension */
Package () {
    Package () { "ports", "PRTS" },
}

    })
    Name (PRTS, Package() {

/* data extension */
Package () {
    Package () { "port@4", "PRT4" },
}

    })



ACPI ISP example

    Name (PRT4, Package() {
/* device specific data */
Package () {
    Package () { "port", 4 }, /* CSI-2 port number */
},
/* data extension */
Package () {
    Package () { "endpoint@0", "EP0" },
}

    })
    Name (EP0, Package() {

/* device specific data */
Package () {
    Package () { "endpoint", 0 },
    Package () { "clock-lanes", 0 },
    Package () { "data-lanes", Package () { 1, 2, 3, 4 } },
    Package () { "remote-endpoint", Package () { \_SB.PCI0.I2C2.CAM0, 0, 0, 0 } },
},

    })
} 

    }
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