

Cameras in embedded systems:
Device tree and ACPI view

Sakari Ailus - Intel

A typical embedded system with a
camera

SoC

camera
module

lens voice coil

sensor

lens voice coil

lens

ISPCSI-2

I²C
I²C

GPIO

regulator

reset

vana

vdig

clock

● Image Signal Processor
● Raw camera sensor
● Lens voice coil

Raw sensors

● Raw sensors have little processing logic in the
sensor itself
– Analogue and digital gain but not much more

This is how white looks like! -->

Image signal processors

● Process the image
for viewing

After ISP processing white
looks like this --->

Video4Linux and Media controller

● Video4Linux (V4L2) is the Linux API for capturing
images
– Video capture cards

– USB webcams

– Cameras in embedded devices

● Media controller is a control interface for complex
media devices
– Image pipeline discovery and configuration
– Device discovery

Example of a
media graph

ISP

se
ns

or

Probing

● Each driver is
probed separately

● How to tell drivers they all are part of the same
media device?

PCI, AMBA etc.

ISP
I2C

controller

sensor
lens

voice coil

Media device setup

1.media_device_init()

2.v4l2_device_register()

3.video_register_device()

5.v4l2_device_register_subd
ev(isp)

6.v4l2_register_subdev_nod
es()

7.media_device_register()

4.v4l2_device_register_subdev(
sensor)

Media device driver sensor driver

V4L2 async

V4L2 async

● The V4L2 async framework facilitates sub-
device registration

● V4L2 sub-device device node creation and
media device registration postponed after probe

● To do its job, the V4L2 async framework makes
use of firmware provided information

V4L2 async example (ISP)

device base ISP driver ISP DT node sensor DT node V4L2 async async sub-device li
st async notifier list

probe(dev)

parse local endpoints

of_graph_get_remote_port_parent(endpoint)

v4l2_async_register_notifier(notifier)

Look for sub-devices mat
ching the notifier list

No match found

Add ISP notifier

V4L2 async (sensor)

device base ISP driver sensor driver sensor DT node V4L2 async async notifier list

probe(dev)

v4l2_of_parse_endpoint()

endpoint properties

v4l2_async_register_subdev(sd)

Look for a notifier matchi
n the sub-device

Found it!

notifier->bound()

notifier->complete()

Device tree

Device tree

● System hardware description in a human readable format
● Originates from Sparc / Open Firmware
● Primarily used on embedded systems

– ARM

– Also PowerPC, Sparc and x86

● Tree structure
– Nodes

– Properties

● Source code compiled into binary before use

Device Tree standard and bindings

● Device Tree specification maintained by
devicetree.org
– Syntax and some semantics

● Bindings define the interface between the firmware
and the software
– Bindings are Operating System specific

– Linux Device tree binding documentation part of the Linux
kernel source

– FreeBSD developers appear to be converging towards
using Linux DT bindings

Device tree graphs

● phandle properties can be used to refer to
other nodes in the tree

● Port is an interface in a device (as in an IP
block)

● Endpoint describes one end of a connection to
a port [7]

Sensor node

&i2c2 {
smia_1: camera@10 {

compatible = "nokia,smia";
reg = <0x10>;
/* No reset gpio */
vana-supply = <&vaux3>;
clocks = <&isp 0>;
clock-frequency = <9600000>;
nokia,nvm-size = <(16 * 64)>;
port {

smia_1_1: endpoint {
link-frequencies = /bits/ 64 <199200000 210000000 499200000>;
clock-lanes = <0>;
data-lanes = <1 2>;
remote-endpoint = <&csi2a_ep>;

};
};

};
};

source: arch/arm/boot/dts/omap3-n9.dts

ISP node board specific part

&isp {
vdd-csiphy1-supply = <&vaux2>;
vdd-csiphy2-supply = <&vaux2>;
ports {

port@2 {
reg = <2>;
csi2a_ep: endpoint {

remote-endpoint = <&smia_1_1>;
clock-lanes = <2>;
data-lanes = <1 3>;
crc = <1>;
lane-polarities = <1 1 1>;

};
};

};
};

source: arch/arm/boot/dts/omap3-n9.dts

OF graph API

● Parse port and endpoint nodes under device
nodes

● Enumerate over endpoints
● Obtain remote endpoint

– Based on the phandle value

ACPI

ACPI

● Advanced Configuration and Power Interface
● Operating system independent
● Origins in x86 and PC

– Increasingly used in embedded systems

● Device discovery and enumeration
● Power management
● ACPI methods

– Runnable code

– ACPI virtual machine

ACPI

● ACPI specifications developed by UEFI Forum
– Roughly one specification per year

● What do you do if you need to add a new kind
of a device?
– A new ACPI specification?

ACPI Device Specific Data

● _DSD object type part of ACPI 5.1 and later
– Key-value pairs (property extension) and

– Tree structures (hierarchical data extension)

● Together property and data extension could be
used to implement very similar functionality to
Devicetree

● _DSD property registry [6]
– Light-weight approach for registering _DSD properties

fwnode property API

● Access properties independently of underlying
firmware implementation
– Device Tree

– ACPI

● Makes use of ACPI _DSD property extension
[2]

Future work

Fwnode graph API

● Functionally the same as the OF graph API
– But is firmware independent

● Device tree implementation is used on Device
tree

● Makes use of the _DSD hierarchical data
extension [3] on ACPI

● Implementation at RFC level [4]

V4L2 fwnode API

● ”V4L2 ACPI support”
– Embedded systems with I²C components

– Requires both fwnode graph API and V4L2 fwnode API

● Same functionality as V4L2 OF API
● V4L2 fwnode and V4L2 OF fully interoperable

– Sub-device driver using V4L2 fwnode works with a media
device driver using V4L2 OF

– and vice versa!

● RFC implementation available [5]

Flash

● LED flash devices supported
● But the kernel has no knowedge which sensor

they're related to
– This is rather important if there are multiple

cameras in the system, such as most mobile
phones nowadays

● Standardise phandle property for this?

Camera module

● Currently there's no ”camera module” concept in
the kernel (nor DT or ACPI)

● Camera module construction is important for the
user space
– Which sensor and lens are related?

– What kind of lens is there?

– What's the voice coil spring constant?

– Is there an infra red filter? What kind of filter is it?
– What's the aperture size?

Camera module power on and
power off sequences

● Regulators, clocks and / or GPIOs may be shared between
module components

● Power on and power off sequences device component
specific
– Which order and when each resource may be enabled?

– E.g. regulator and clock are enabled, then after 10 ms the reset
GPIO can be lifted and the device is ready for use

● Requirements of both
lens and sensor must be
considered for module
power-up sequence

camera
module

lens voice coil

sensor

lens voice coil

lens

CSI-2

I²C

reset

vana

vdig

clock

Questions?

References

[1] http://www.uefi.org/acpi

[2] http://www.uefi.org/sites/default/files/resources/_DSD-device-properties-UUID.pdf

[3] http://www.uefi.org/sites/default/files/resources/_DSD-hierarchical-data-extension-UUID-v1.pdf

[4] http://www.spinics.net/lists/linux-acpi/msg69547.html

[5] http://www.spinics.net/lists/linux-media/msg106160.html

[6] https://github.com/ahs3/dsd

[7] Documentation/devicetree/bindings/graph.txt

Firmware logistics

Device tree ACPI

BIOS
vendor

system
vendor

BIOS in flash
memory

SoC
vendor

OS
binaries

runtime
ACPI tables

m
other-

board

support
w

ebsite

se
le

ctive
 ta

b
le

re
p

la
ce

m
e

n
t

(in
itrd

)
SoC

vendor

OS
binaries

system
vendor

flash
memory

Linux
kernel

dts

Device tree

app
ended to

kernel im
age

http://www.uefi.org/acpi
http://www.uefi.org/sites/default/files/resources/_DSD-device-properties-UUID.pdf
http://www.uefi.org/sites/default/files/resources/_DSD-hierarchical-data-extension-UUID-v1.pdf
http://www.spinics.net/lists/linux-acpi/msg69547.html
http://www.spinics.net/lists/linux-media/msg106160.html
https://github.com/ahs3/dsd

ACPI camera example

ACPI camera example

 Scope (_SB.PCI0.I2C2)
 {

Device (CAM0)
{
 Name (_DSD, Package () {

/* device specific data */
Package () {
 Package () { "compatible", Package () { "nokia,smia" } },
 Package () { "lanes", 4 },
 Package () { "clock-frequency", 24000000 },
},
/* data extension */
Package () {
 Package () { "ports", "PRTS" },
}

 })

ACPI camera example

 Name (PRTS, Package() {
/* data extension */
Package () {
 Package () { "port@0", "PRT0" },
}

 })
 Name (PRT0, Package() {

/* device specific data */
Package () {
 Package () { "port", 0 },
},
/* data extension */
Package () {
 Package () { "endpoint@0", "EP0" },
}

 })

ACPI camera example
 Name (EP0, Package() {

/* device specific data */
Package () {
 Package () { "endpoint", 0 },
 Package () { "clock-lanes", 0 },
 Package () { "data-lanes", Package () { 1, 2, 3, 4 } },
 Package () { "link-frequencies",

 Package () { 209600000, 342000000, 451200000 } },
 Package () { "remote-endpoint", Package() { _SB.PCI0.ISP, 0, 0, 0 } },
},

 })
}

 }

ACPI ISP example
 Scope (_SB.PCI0)
 {

Device (ISP)
{
 Name (_DSD, Package () {

/* data extension */
Package () {
 Package () { "ports", "PRTS" },
}

 })
 Name (PRTS, Package() {

/* data extension */
Package () {
 Package () { "port@4", "PRT4" },
}

 })

ACPI ISP example

 Name (PRT4, Package() {
/* device specific data */
Package () {
 Package () { "port", 4 }, /* CSI-2 port number */
},
/* data extension */
Package () {
 Package () { "endpoint@0", "EP0" },
}

 })
 Name (EP0, Package() {

/* device specific data */
Package () {
 Package () { "endpoint", 0 },
 Package () { "clock-lanes", 0 },
 Package () { "data-lanes", Package () { 1, 2, 3, 4 } },
 Package () { "remote-endpoint", Package () { _SB.PCI0.I2C2.CAM0, 0, 0, 0 } },
},

 })
}

 }

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

