
Transactional Device Tree & Overlays	

Making Reconfigurable Hardware Work

Pantelis Antoniou <pantelis.antoniou@konsulko.com>

mailto:pantelis.antoniou@konsulko.com

Describing Hardware

! Platforms get increasingly more complex.	

! ARM based systems are even more complex than ever.	

! Platform data not cutting it anymore.	

! Enter Device Tree.	

! Originally on PowerPC, now on ARM+everything else besides
x86.	

! X86 left out? Maybe not.

2

Device Tree (vanilla flavor)

! According to ePAPR “Describes system hardware”	

! "The Device Tree is a data structure for describing hardware.
Rather than hard coding every detail of a device into an
operating system, many aspect of the hardware can be described
in a data structure that is passed to the operating system at boot
time." 	

! Tree structure	

! Describes information that can't be dynamically determined by
running software

3

Device Tree complaining

! A popular pass-time.	

! “And for whatever your part is in the BBB device tree mess, I hope
sincerely that you someday acquire enough wisdom to feel ashamed of
what you did. Really. Okay, I flamed.”	

! Nuggets of truth	

! One more language to learn (dts) and first timers find it complex.	

! Purely data driven, make it hard to wrap around old platform data +
callback uses.	

! No syntax checks at compile time.	

! Not every hardware piece can be statically defined at boot time.

4

Bare Beaglebones

! BeagleBone is a low-cost, community-supported development
platform for developers and hobbyists.	

! CPU: AM335x 1GHz ARM® Cortex-A8	

! Memory: 512MB	

! A lot of standard interfaces (USB Host/Client, Ethernet, HDMI)	

! Build your own stuff and connect them using the 2x46 pin
connectors (passthrough) – capes.	

! Lots of capes already available.

5

Beaglebone and the Device Tree

! Capes are identified using an onboard EEPROM.	

! No way to support this scheme using static Device Tree.	

! Trying to do Device Tree blob mangling in the bootloader is
quite difficult (and it doesn’t work with stacked capes).	

! A method to dynamically alter the live Device Tree according to
the probed cape required.	

! Opening a can of worms...

6

Intermission

! Beaglebone's capes are not unique.	

! Rasperry Pi (HAT specification).	

! FPGAs can instantiate different peripherals according to the
bitstream loaded.	

! The view that hardware is something static is outdated.
Hardware is software nowadays.	

! Friends don't let friends (hardware hackers) use Arduino – but
Linux is just too hard for mostly hardware hackers (write a
kernel driver to interface to a LED?).

7

Going down in flames

! 31 Oct 2012: “Capebus; a bus for SoCs using simple expansion
connectors”	

! Not a bus!	

! Booing from the peanut gallery.	

! They were right.	

! Back to the drawing board.

8

CONFIG_OF_DYNAMIC

! Allows modification of the Live Device Tree at runtime.	

! Not very widely used until now – only on Power.	

! Destructive editing of the live tree	

! Non atomic	

! Changes cannot be reverted	

! No connection to the bus driver model; changes to the live tree
do not get reflected. 	

! Part of the puzzle, but not enough as it was.

9

Part 1: Reworking OF_DYNAMIC

! /proc → /sys (gcl)	

! struct device_node now a kobj (gcl)	

! drivers/of/dynamic.c	

! Semantics of the of_reconfig notifiers have changed.	

! Major new user is dt selftests. Test case data dynamically inserted
(/me nags about how).	

! Already accepted in mainline (3.17)

10

Part 2: Dynamic Resolution

/* foo.dts */

/ {

 bar = <&FOO>; /* compiles to bar = <1>; */

 FOO: foo { }; /* dtc assigns value of 1 to foo phandle */

};

!
/* qux.dts */

/ {

 qux = <&BAZ>; /* compiles to qux = <1>; */

 quux = <&FOO>; /* ??? Only possible to resolve on runtime */

 BAZ: baz { }; /* dtc assigns value of 1 to baz phandle */

};

11

Resolving phandles

! Phandles are pointers to other parts in the tree. For example
pinmuxing, interrupt-parent etc.	

! Phandles are internally represented by a single 32 scalar value
and are assigned by the DTC compiler when compiling	

! Extension to the DTC compiler required, patchset already in v2,
minor rework is required.	

! “dtc: Dynamic symbols & fixup support (v2)”

12

Changes made to the DT Compiler

! ABSOLUTELY NO CHANGES TO THE DTB FORMAT.

! -@ command line option global enable.	

! Generates extra nodes in the root (__symbols__, __fixups__,
__local_fixups__) containing resolution data.	

! /plugin/ marks a device tree fragment/object (controls generation
of __fixups__ and __local_fixups__ nodes).	

! To perform resolution the base tree needs to be compiled using
the -@ option and causes generation of __symbols__ node only.

13

Compiling foo.dts (base tree)

$ dtc -O dtb -o foo.dtb -b 0 -@ foo.dts && fdtdump foo.dtb

/ {

 bar = <0x00000001>;

 foo {

 linux,phandle = <0x00000001>;

 phandle = <0x00000001>;

 };

 __symbols__ {

 FOO = "/foo";

 };

};
14

Compiling qux.dts (object)

15

$ dtc -O dtb -o qux.dtbo -b 0 -@ qux.dts && fdtdump qux.dtbo

/ {

 qux = <0x00000001>;

 quux = <0xdeadbeef>;

 baz {

 linux,phandle = <0x00000001>;

 phandle = <0x00000001>;

 };

 __symbols__ { BAZ = "/baz"; };

 __fixups__ { FOO = "/:quux:0"; };

 __local_fixups__ { fixup = "/:qux:0"; };

};

How the resolver works

! Get the max device tree phandle value from the live tree + 1.	

! Adjust all the local phandles of the tree to resolve by that amount.	

! Using the __local__fixups__ node information adjust all local
references by the same amount.	

! For each property in the __fixups__ node locate the node it
references in the live tree. This is the label used to tag the node.	

! Retrieve the phandle of the target of the fixup.	

! For each fixup in the property locate the node:property:offset
location and replace it with the phandle value.

16

Part 3: Changesets/Transactions

! A Device Tree changeset is a method which allows us to apply a
set of changes to the live tree.	

! Either the full set of changes apply or none at all.	

! Only after a changeset is applied notifiers are fired; that way the
receivers only see coherent live tree states.	

! A changeset can be reverted at any time.	

! Part of mainline as of 3.17.

17

Changesets in kernel API

! Issue of_changeset_init() to prepare the changeset.	

! Perform your changes using of_changeset_ 
{attach_node|detach_node|add_property|
remove_property|update_property}()

! Lock the tree by taking the of_mutex;	

! Apply the changeset using of_changeset_apply(); 	

! Unlock the tree by releasing of_mutex.	

! To revert everything of_changeset_revert();

18

Part 4: Device Tree Overlays

! A method to dynamically insert a device tree fragment to a live tree and
effect change.	

! Simplest example: turn the status property of a device node from
“disabled” to “okay” and have the device corresponding to that node be
created.	

! Low level interface; A generic configfs manager is provided, but for
platforms like the beaglebone a more elaborate manager may be required.	

! Good enough for hardware hackers – no reboots required (if all the
platform device removal bugs are fixed).	

! 7th version of the patchset was posted, 8th will be forthcoming ELCE14/
Plumbers discussion.

19

Device Tree Overlay format

20

/plugin/;

/ {

 /* set of per-platform overlay manager properties */

 fragment@0 {

 target = <&target-label>; /* or target-path */

 __overlay__ {

 /* contents of the overlay */

 };

 };

 fragment@1 {

 /* second overlay fragment... */

 };

};

Device Tree Overlay in kernel API

! Get your device tree overlay blob in memory – using a call to
request_firmware() call, or linking with the blob is fine.	

! Use of_fdt_unflatten_tree() to convert to live tree
format.	

! Call of_resolve_phandles() to perform resolution.	

! Call of_overlay_create() to create & apply the overlay.	

! Call of_overlay_destroy() to remove and destroy the
overlay. Note that removing overlapping overlays must be
removed in reverse sequence.

21

Device Overlay ConfigFS manager

! Generic Overlay manager.	

! Very simple file based interface	

! # mkdir /config/device-tree/overlays/test

! # cp OVERLAY.dtbo \ 
 /config/device-tree/overlays/test/dtbo

! # rmdir /config/device-tree/overlays/test

! Requires a binary configfs attribute patch	

! Patches reviewed, and will be reposted.

22

In the pipeline

! Overlays based FPGA manager by Alan Tull	

! Beaglebone cape manager	

! Board revision run-time detection - using a single kernel and
device tree blob for different revisions of a board.	

! Your ideas?

23

Thank you for listening

