
Institute for Defense Analyses
4850 Mark Center Drive Alexandria, Virginia 22311-1882

Core Infrastructure Initiative (CII)
Best Practices Badge: One Year Later

Dr. David A. Wheeler
2017-02-08

dwheeler @ ida.org

Personal: dwheeler @ dwheeler.com,
Twitter: drdavidawheeler

GitHub & GitLab: david-a-wheeler
https://www.dwheeler.com

Background

 It is not the case that “all OSS* is insecure” … or
that “all OSS is secure”
 Just like all other software, some OSS is (relatively)

secure.. and some is not
 Heartbleed vulnerability in OpenSSL
 Demonstrated in 2014 that some widely-used OSS didn’t

follow commonly-accepted practices & needed investment
for security

 Linux Foundation created Core Infrastructure
Initiative (CII) in 2014
 “to fund and support critical elements of the global

information infrastructure”
 “CII is transitioning from point fixes to holistic solutions for

open source security”

1 *OSS=Open source software

Presenter
Presentation Notes
Heartbleed logo is free to use, rights waived via CC0, per http://heartbleed.com/

CII Best Practices Badge

 OSS tends to be more secure if it follows good
security practices, undergoes peer review, etc.
 How can we encourage good practices?
 How can anyone know good practices are being followed?

 Badging project approach:
 Identified a set of best practices for OSS projects

 Best practices is for OSS projects (production side)
 Based on existing materials & practices

 Created web application: OSS projects self-certify
 If OSS project meets criteria, it gets a badge (scales!)
 No cost, & independent of size / products / services /

programming language
 Self-certification mitigated by automation, public display of

answers (for criticism), LF spot-checks, LF can override
2

BadgeApp: Home page

3

To get your OSS project a badge, go to
https://bestpractices.coreinfrastructure.org/

Criteria

 Currently one level (“passing”)
 Captures what well-run projects typically already do
 Not “they should do X, but no one does that”

 66 criteria in 6 groups:
 Basics
 Change Control
 Reporting
 Quality
 Security
 Analysis

4

Source:
https://github.com/linuxfoundation/cii-best-practices-badge/

blob/master/doc/criteria.md

Badge scoring system

 To obtain a badge, all:
 MUST and MUST NOT criteria (42/66) must be met
 SHOULD (10/66) met, OR unmet with justification

 Users can see those justifications & decide if that’s enough

 SUGGESTED (14/66) considered (met or unmet)
 People don’t like admitting they didn’t do something

 In some cases, URL required in justification (to point
to evidence; 8/66 require this)

5

Initial announcement

 General availability announced May 2016
 Early badge holders:
 BadgeApp (itself!)
 Node.js
 Linux kernel
 curl
 GitLab
 OpenSSL (pre-Heartbleed missed 1/3 criteria)
 Zephyr project

6 Source: https://bestpractices.coreinfrastructure.org/projects

CII badges are getting adopted!

7 Source: https://bestpractices.coreinfrastructure.org/project_stats
as of 2017-02-06

All
projects

Projects
with non-

trivial
progress

Daily
activity

Over 500!

Some additional badge holders

 CommonMark
(Markdown in PHP)

 Apache Libcloud
 Apache Syncope
 GnuPG
 phpMyAdmin
 pkgsrc
 openstack
 OWASP ZAP (web app

scanner)

 OPNFV (open network
functions virtualization)

 JSON for Modern C++
 NTPsec
 LibreOffice
 OpenUnison
 sqrl-server-base
 Blender
 dpkg
 libseccomp

8 Source: https://bestpractices.coreinfrastructure.org/projects?gteq=100&sort=achieved_passing_at

60 “passing” badges as of 2017-02-08

Sample impacts of CII badge process

 OWASP ZAP (web app scanner)
 Simon Bennetts: “[it] helped us improve ZAP quality… [it] helped us

focus on [areas] that needed most improvement.”
 Change: Significantly improved automated testing

 CommonMark (Markdown in PHP) changes:
 TLS for the website (& links from repository to it)
 Publishing the process for reporting vulnerabilities

 OPNFV (open network functions virtualization)
 Change: Replaced no-longer-secure crypto algorithms

 JSON for Modern C++
 “I really appreciate some formalized quality assurance which even

hobby projects can follow.”
 Change: Added explicit mention how to privately report errors
 Change: Added a static analysis check to continuous integration script

9 Source: https://github.com/linuxfoundation/cii-best-practices-badge/wiki/Impacts

Biggest challenges today for getting a badge

 Looked at all projects 90%+ but not passing
 52 projects. MUST with Unmet or “?” => Top 10 challenges:

10

Criterion %missed
1 tests_are_added 25%
2 vulnerability_report_process 23%
3 sites_https 17%
4 test_policy 15%
5 static_analysis 15%
6 dynamic_analysis_fixed 15%
7 vulnerability_report_private 13%
8 know_common_errors 12%
9 know_secure_design 10%
10 documentation_interface 8%

Changing to 75%+ (81 projects) top 10 list has a slightly different order but the set is the same,
except that 75%+ adds warnings_fixed as its #10 & know_common_errors moves #8#11

This data is as of
2017-02-06 12:20ET

Analysis

Vulnerability
reporting

Tests

HTTPS

Know
secure

development

Document-
ation

Presenter
Presentation Notes
To determine what the “top 10” challenges are, I examined the projects that have at least 90% passing but not 100%, and sorted the MUST criteria that were “Unmet” or “?”. I didn’t include “SHOULD” or “SUGGESTED”, since those can be justified away with text. I skipped the “future” criterion crypto_certificate_verification_status, since it is not required.The script “compute-criteria-stats” in the repository computed these.Warning sign: https://openclipart.org/detail/104263/warning-signBeaker: https://openclipart.org/detail/272207/beaker-iconGreen tick: https://openclipart.org/detail/17014/greentickBrain: https://openclipart.org/detail/140701/brainAll openclipart is released to the public domain (CC0), see: https://openclipart.org/shareBooks: https://openclipart.org/detail/192515/stack-of-three-booksUnlock icon from http://www.iconsdb.com/red-icons/unlock-icon.html - This icon is provided by icons8 as Creative Commons Attribution-NoDerivs 3.0.

Tests

 Criteria
 #1 The project MUST have evidence that such

tests are being added in the most recent major
changes to the project. [tests_are_added]
 #4 The project MUST have a general policy

(formal or not) that as major new functionality is
added, tests of that functionality SHOULD be
added to an automated test suite. [test_policy]

 Automated testing is important
 Quality, supports rapid change, supports

updating dependencies when vulnerability found
 No coverage level required – just get started

11

Vulnerability reporting

 Criteria
 #2 “The project MUST publish the process for

reporting vulnerabilities on the project site.”
[vulnerability_report_process]
 #8 “If private vulnerability reports are

supported, the project MUST include how to
send the information in a way that is kept
private.” [vulnerability_report_private]

 Just tell people how to report!
 In principle easy to do – but often omitted
 Projects need to decide how

12

HTTPS

 #3 “The project sites (website, repository, and download
URLs) MUST support HTTPS using TLS.” [sites_https]

 Details:
 You can get free certificates from Let's Encrypt.
 Projects MAY implement this criterion using (for example)

GitHub pages, GitLab pages, or SourceForge project pages.
 If you are using GitHub pages with custom domains, you MAY

use a content delivery network (CDN) as a proxy to support
HTTPS.

 We’ve been encouraging hosting systems to support
HTTPS

13

Analysis

 #5 “At least one static code analysis tool MUST be
applied to any proposed major production release of the
software before its release, if there is at least one
FLOSS tool that implements this criterion in the selected
language.” [static_analysis]
 A static code analysis tool examines the software code (as

source code, intermediate code, or executable) without
executing it with specific inputs.

 #6 “All medium and high severity exploitable
vulnerabilities discovered with dynamic code analysis
MUST be fixed in a timely way after they are confirmed.”
[dynamic_analysis_fixed]
 Early versions didn’t allow “N/A”; this has been fixed.

14

Know secure development

 Criteria
 #8 “The project MUST have at least one primary

developer who knows how to design secure
software.” [know_secure_design]
 #9 “At least one of the primary developers MUST

know of common kinds of errors that lead to
vulnerabilities in this kind of software, as well as
at least one method to counter or mitigate each
of them.” [know_common_errors]

 Specific list of requirements given – doesn’t
require “know everything”

 Perhaps need short “intro” course material?

15

Documentation

 #10 “The project MUST include reference
documentation that describes its external
interface (both input and output).”
[documentation_interface]

 Some OSS projects have good documentation –
but some do not

16

Good news

 Many criteria are widely met, e.g.:
 Use of version control - repo_track
 Process for submitting bug reports -

report_process
 No unpatched vulnerabilities of medium or

high severity publicly known for more than 60
days - vulnerabilities_fixed_60_days

17

Higher-level criteria

 Have developed draft criteria for higher-level badges
 Current names: “passing+1” and “passing+2”
 Passing+2 expected to be harder and not necessarily achievable

by single-person projects
 Merged from proposals, NYC 2016 brainstorm, OW2, Apache

maturity model
 Expect to drop/add criteria due to feedback

 ANNOUNCING: It’s available for feedback:
 https://github.com/linuxfoundation/cii-best-practices-

badge/blob/master/doc/other.md

 We’d love your feedback!

18

Some proposed passing+1 criteria

 The project MUST clearly define and document its project governance model
(the way it makes decisions, including key roles). [governance]

 The project MUST be able to continue with minimal interruption if any one
person is incapacitated or killed… Individuals who run a FLOSS project MAY do
this by providing keys in a lockbox and a will providing any needed legal rights
(e.g., for DNS names). [access_continuity]

 The project MUST have FLOSS automated test suite(s) that provide at least
80% statement coverage if there is at least one FLOSS tool that can measure
this criterion in the selected language. [test_statement_coverage80]

 The project MUST automatically enforce its selected coding style(s) if there is at
least one FLOSS tool that can do so in the selected language(s).
[coding_standards_enforced]

 The project results MUST check all inputs from potentially untrusted sources to
ensure they are valid (a whitelist), and reject invalid inputs, if there are any
restrictions on the data at all. [input_validation]

 Project releases of the software intended for widespread use MUST be
cryptographically signed… [signed_releases]

 Projects MUST monitor or periodically check their external dependencies
(including convenience copies) to detect known vulnerabilities, and fix
exploitable vulnerabilities or verify them as unexploitable.
[dependency_monitoring]

19

Some proposed passing+2 criteria

 The project MUST require two-factor authentication (2FA) for
developers for changing a central repository or accessing
sensitive data (such as private vulnerability reports)…
[require_2FA]

 The project MUST have at least 50% of all proposed
modifications reviewed before release by a person other than
the author… [two_person_review]

 The project MUST have a "bus factor" of 2 or more.
[bus_factor]

 The project MUST have a reproducible build.
[build_reproducible]

 The project MUST apply at least one dynamic analysis tool to
any proposed major production release of the software before
its release. [dynamic_analysis]

 The project MUST have performed a security review within
the last 5 years. [security_review]

20

Involved in OSS?

 If you lead an OSS project, what you do matters!
 People depend on the software you create
 The practices you apply affect the result
 Secure or quality software is not an accident
 Please try to get a badge, & show when you have it

 If you’re considering using an OSS project
 Check on the project – should you use it?

 We’d love your help in improving criteria

21

Presenter
Presentation Notes
Heartbleed logo is free to use, rights waived via CC0, per http://heartbleed.com/

In conclusion: Key URLs

 CII
 https://www.coreinfrastructure.org

 CII best practices badge (get a badge):
 https://bestpractices.coreinfrastructure.org/

 Draft passing+1 & passing+2 criteria
 https://github.com/linuxfoundation/cii-best-practices-

badge/blob/master/doc/other.md
 CII best practices badge project:
 https://github.com/linuxfoundation/cii-best-practices-

badge

22

My thanks to the many who reviewed or helped develop the badging criteria and/or the software to implement it. This includes:
Mark Atwood, Tod Beardsley, Doug Birdwell, Alton(ius) Blom, Hanno Böck, enos-dandrea, Jason Dossett, David Drysdale,

Karl Fogel, Alex Jordan (strugee), Sam Khakimov, Greg Kroah-Hartman, Dan Kohn, Charles Neill (cneill), Mark Rader, Emily
Ratliff, Tom Ritter, Nicko van Someren, Daniel Stenberg (curl), Marcus Streets, Trevor Vaughan, Dale Visser, Florian Weimer

Backup

23

Open source software

 OSS: software licensed to users with these freedoms:
 to run the program for any purpose,
 to study and modify the program, and
 to freely redistribute copies of either the original or modified

program (without royalties to original author, etc.)
 Original term: “Free software” (confused with no-price)
 Other synonyms: libre sw, free-libre sw, FOSS, FLOSS
 Antonyms: proprietary software, closed software
 Widely used; OSS #1 or #2 in many markets

 “… plays a more critical role in the DoD than has generally been
recognized.” [MITRE 2003]

 OSS almost always commercial by law & regulation
 Software licensed to general public & has non-government use
 commercial software (in US law, per 41 USC 403)

24

A little about the CII

 Multi-million dollar project
 Supported by many, e.g., Amazon Web Services,

Adobe, Bloomberg, Cisco, Dell, Facebook, Fujitsu,
Google, Hitachi, HP, Huawei, IBM, Intel, Microsoft,
NetApp, NEC, Qualcomm, RackSpace,
salesforce.com, and VMware

 Actions
 Collaboratively identifies & funds OSS projects in

need of assistance
 Allows developers to continue their work under

community norms
 Transitioning from point fixes to holistic solutions for

open source security

25

CII-funded investments in key OSS projects

 OpenSSL
 Funded key developers: improving security,

enabling outside reviews, & improving
responsiveness

 Working with the Open Crypto Audit Project,
has retained the NCC Group to audit
OpenSSL code

 OpenSSH
 GnuPG
 Network Time Protocol (NTP) daemon
 Linux Kernel Self Protection Project
 …

26

OpenSSL issues

Source: https://www.coreinfrastructure.org/grants

CII-funded projects with multi-project impacts

 The fuzzing project
 OWASP Zed Attack Proxy (ZAP) as a

service
 False-Positive-Free Testing with Frama-C
 Reproducible builds
 CII census (project quantitative analysis)
 Best practices badge (focus today)

27 Source: https://www.coreinfrastructure.org/grants

Mozilla Open Source Support (MOSS) relation

 Mozilla Open Source Support (MOSS) added
Secure Open Source (SOS) track
 Announced June 9, 2016
 “supports security audits for open source software

projects, and remedial work to rectify the problems
found”

 “support model is different from & complementary to
CII. [CII focuses on] deeper-dive investments into
core OS security infrastructure, while [SOS targets]
OSS projects with lower-hanging fruit security needs.”

 CII complements other efforts like MOSS

28
Sources: https://wiki.mozilla.org/MOSS/Secure_Open_Source
https://blog.mozilla.org/blog/2016/06/09/help-make-open-source-secure/

Presenter
Presentation Notes
https://wiki.mozilla.org/MOSShttps://wiki.mozilla.org/MOSS/Secure_Open_Source

Badge criteria must be…

 Relevant
 Attainable by typical OSS projects
 Clear
 Include security-related criteria
 Consensus of developers & users
 Criteria & web app developed as OSS project
 Built on existing work, e.g., Karl Fogel’s Producing

Open Source Software
 Not hypocritical
 Our web app must get its own badge!

29

Worked with several projects, including the
Linux kernel & curl, to perform alpha test of criteria

Criteria categories and examples (1)

1. Basics
 The software MUST be released as FLOSS*. [floss_license]
 It is SUGGESTED that any required license(s) be approved by

the Open Source Initiative (OSI). [floss_license_osi]

2. Change Control
 The project MUST have a version-controlled source repository

that is publicly readable and has a URL. [repo_public]
 Details: The URL MAY be the same as the project URL. The project

MAY use private (non-public) branches in specific cases while the
change is not publicly released (e.g., for fixing a vulnerability before
it is revealed to the public).

3. Reporting
 The project MUST publish the process for reporting

vulnerabilities on the project site. [vulnerability_report_process]

30 *FLOSS=Free/Libre/Open Source Software

Criteria categories and examples (2)

4. Quality
 If the software requires building for use, the project MUST

provide a working build system that can automatically rebuild
the software from source code. [build]

 The project MUST have at least one automated test suite that
is publicly released as FLOSS (this test suite may be
maintained as a separate FLOSS project). [test]

 The project MUST have a general policy (formal or not) that as
major new functionality is added, tests of that functionality
SHOULD be added to an automated test suite. [test_policy]

 The project MUST enable one or more compiler warning flags,
a "safe" language mode, or use a separate "linter" tool to look
for code quality errors or common simple mistakes, if there is
at least one FLOSS tool that can implement this criterion in the
selected language. [warnings]

31

Criteria categories and examples (3)

5. Security
 At least one of the primary developers MUST know of common

kinds of errors that lead to vulnerabilities in this kind of
software, as well as at least one method to counter or mitigate
each of them. [know_common_errors]

 The project's cryptographic software MUST use only
cryptographic protocols and algorithms that are publicly
published and reviewed by experts. [crypto_published]

 The project MUST use a delivery mechanism that counters
MITM attacks. Using https or ssh+scp is acceptable.
[delivery_mitm]

 There MUST be no unpatched vulnerabilities of medium or
high severity that have been publicly known for more than 60
days. [vulnerabilities_fixed_60_days]

32

Criteria categories and examples (4)

6. Analysis
 At least one static code analysis tool MUST be applied to any

proposed major production release of the software before its
release, if there is at least one FLOSS tool that implements this
criterion in the selected language… [static_analysis]

 It is SUGGESTED that the {static code analysis} tool include
rules or approaches to look for common vulnerabilities in the
analyzed language or environment.
[static_analysis_common_vulnerabilities]

 It is SUGGESTED that at least one dynamic analysis tool be
applied to any proposed major production release of the
software before its release. [dynamic_analysis]

33

Badge criteria must NOT be…

 Will NOT require any specific products or
services (especially proprietary ones)
 We intentionally don’t require git or GitHub
 That said, will automate many things if project

does use GitHub
 Will NOT require or forbid any particular

programming language

34

Describing criteria

 Criteria have different levels of importance
 MUST (NOT) – required (42/66)
 SHOULD (NOT) – sometimes valid to not do (10/66)
 SUGGESTED – common valid reasons, but at least

consider it (14/66)
 Criteria may have “details” (39/66)
 Give clarifications/examples, e.g., “MAY…”

 Each criterion is named (lowercase underscore)
 For each criterion, users answer:
 Status: Met, Unmet, Unknown (?), N/A*
 Justification: Markdown text. Usually optional

35 * N/A is only allowed for 21/66 criteria

BadgeApp security

 File “security.md” describes how we secure the web app
 Report vulnerabilities to designated people
 Requirements – simple, most data public

 Passwords stored in database only as iterated salted hashes
 Design: Showed that we applied design principles

 Simple, filter inputs
 Implementation

 Checked that it counters all of OWASP top 10
 Applied “Ruby on Rails Security Guide”
 Hardened (e.g., hardening HTTP headers)

 Verification
 Source code quality analyzer (rubocop, rails_best_practices), [static]

source code weakness analyzer (brakeman), web application scanner
(OWASP ZAP), 98% test coverage, OSS enables multi-person review

 Supply chain (reuse)
 Consider before use, bundle-audit (check known vulns), license_finder
 Strive to minimize/simplify transitive dependencies & size

 People
36 Source/more info: https://github.com/linuxfoundation/cii-best-practices-badge/blob/master/doc/security.md

BadgeApp: List of projects

37

BadgeApp: Itself as a sample project

38

BadgeApp: Sample project (security tab)

39

EU-FOSSA project interactions with CII Badge

 EU-FOSSA = EU-Free and Open Source Software Auditing
 1M Euro project initiated by 2 Members of European Parliament
 Executed by European Commission (the European Union's

executive body)
 Goal: invest into commonly used OSS which might need support

in the security domain
 Intends to define a complete process to properly perform

code reviews within the European Institutions
 To execute one sample code review during Q3-Q4/2016
 Sample results will determine if activity could become a

continuous action of the European Institutions in the future
 FOSSA project exchanging experiences with CII
 FOSSA looking closely at the CII Badge criteria

 During definition of metrics to analyze sustainability and security

40
See: https://joinup.ec.europa.eu/community/eu-fossa/description and
https://fosdem.org/2016/schedule/event/fossa/

A few notes on the BadgeApp

 “BadgeApp” is simple web application that
implements the criteria (fill in form)
 OSS (MIT license)

 All libraries OSS & legal to add (checked with license_finder)

 Simple Ruby on Rails app
 Criteria info (text, category, etc.) in YAML

 Overall approach: Proactively counter mistakes
 Mistakes happen; we use a variety of tools,

automated test suite, processes to counter them
 Please contribute!
 See its CONTRIBUTING.md for more

41

	Core Infrastructure Initiative (CII)�Best Practices Badge: One Year Later
	Background
	CII Best Practices Badge
	BadgeApp: Home page
	Criteria
	Badge scoring system
	Initial announcement
	CII badges are getting adopted!
	Some additional badge holders
	Sample impacts of CII badge process
	Biggest challenges today for getting a badge
	Tests
	Vulnerability reporting
	HTTPS
	Analysis
	Know secure development
	Documentation
	Good news
	Higher-level criteria
	Some proposed passing+1 criteria
	Some proposed passing+2 criteria
	Involved in OSS?
	In conclusion: Key URLs
	Backup
	Open source software
	A little about the CII
	CII-funded investments in key OSS projects
	CII-funded projects with multi-project impacts
	Mozilla Open Source Support (MOSS) relation
	Badge criteria must be…
	Criteria categories and examples (1)
	Criteria categories and examples (2)
	Criteria categories and examples (3)
	Criteria categories and examples (4)
	Badge criteria must NOT be…
	Describing criteria
	BadgeApp security
	BadgeApp: List of projects
	BadgeApp: Itself as a sample project
	BadgeApp: Sample project (security tab)
	EU-FOSSA project interactions with CII Badge
	A few notes on the BadgeApp

