

Introduction

Page 2 / 41

Speaker

Angelo Dureghello

Embedded Systems Engineer, Sysam - Nomovok Oy

● from Trieste, Italy, with high interest for electronic, hw repair and computer programming from high school age,

● graduate in Telecommunications, experienced low level programming, C, C++, worked in several different
architectures, experience in Linux kernel and drivers debug, driver development, hw repair and troubleshooting,
some experience in electronic design,

● actually working for Nomovok Oy, Finland

● U-Boot m68k/Coldfire architecture custodian,

● some contribution to Linux kernel for the Coldfire architecture.

● member of “mittelab” hackerspace and LUG in my hometown, Trieste

https://openiotelceurope2016.sched.org/speaker/angelo15?iframe=yes&w=i:0;&sidebar=yes&bg=no

Introduction Page 3 / 41

Aim of this talk is to present an alternative way to explore the interesting, funny and lucrative embedded world:
Build Your Own (Linux) Device.

So the aim is to offer some basic guidelines for this challenging and exciting task.

Of course, there can be complex steps to pass, studies end errors to take in account and some money to spend.

A kind of little investment but there can be personal motivations.

Benefits Page 4 / 41

Ok, but what could be the benefits, at the end ? I buy a module for few dollars,
certainly more advanced of a board done at home, and no time is spent.

● to grow an additional skill on the hardware level, designing, troubleshooting
and understanding the circuit interconnections, how peripherals protocols works, and to enjoy
bringing components up to work properly, one by one,

● to select the combination of CPU / SoC and additional
components where you like to increase your experience,

● maybe a way to practice and contribute in Linux development,
writing / adapting drivers, or fixing any issue
found during the wake-up of the components,

● of course, customizing

Example open board: “amcore”, 100Mhz mcf5307 CPU (no mmu),
4MB parallel NOR flash and
16MB SDRAM

Requirements

Page 5 / 41

Maybe not few, they could be:

● some basic electronic knowledge, like to know the difference between AC and DC, the Ohm law, what are
resistors, capacitors, transistors, diodes, how resistors / capacitors in series and parallel behave, what are
pull-up and pull-down resistors, and the like, things that can be learned on the way, with some freenode irc
#electronics help, plenty of tutorials, books, or asking clarifications to some expert friend,

● some minimal measurement equipment, as a multimeter and an oscilloscope,

● a solder station with a conic and quite thin tip, possibly with hot air too,

● solder paste, tin, some alcohol, a lens, tweezers, manual pump for tin removal, and other small accessories to
buy on the way,

● some manual soldering practice, can be done de-soldering and re-soldering components on old broken boards
as routers, etc..

Requirements

Page 6 / 41

In case a small investment want be done,
a good candidate is the oscilloscope, it is likely the
most used and useful debug instrument.

A good one can really help a lot and speed up the
Things. Look for at least 1Mpoints of memory.

A whole laboratory is not necessary initially,
it can be improved gradually in years.

Finding an old table where you can practice soldering,
initially, should be enough.

Step 1 - CPU selection

Page 7 / 41

● you can select a Linux - supported CPU where you like to grow your experience, of course with some
limitations,

● QFP package - easier to solder, for BGA,
it can still be done but at greater difficulty,

● clock frequency, the higher clock you want to go, the harder
will be the things. Complications comes moving to higher speed
of the bus clock frequency. A good start can be to
stay between 50 and 100Mhz for the bus clock,

● a look on the price, power supplies, programming interface,
if parts are available (samples ?), development boards, application notes,
documentation, etc,

Step 2 – non volatile memory Page 8 / 41

Selecting a non-volatile memory to boot. The first boot binary (generally a boot loader) is loaded into RAM from the
internal CPU ROM loader, some time can be executed (XIP) too.

● you need to check what boot types are supported from the CPU / SoC. Modern SoC’s have several options, parallel
NOR Flash, SPI Flash, NAND, USB, SD etc etc, while simpler / older CPU’s as mcf5307 offers a single choice.

● SPI NOR are generally in packages easy to solder,

● NAND Flash chips are also available in TSOP packages, but introduce the ECC issues

● a good way to start could be a parallel NOR,

● packages 0,5mm pitch easy to solder,
● parallel bus pinout easy to understand,
● CPU can execute in place (XIP) so external SDRAM init can happen just fetching instruction by instruction directly

from the FLASH until the point, after SDRAM init, relocation to SDRAM can eventually happen.

Step 2 – non volatile memory Page 9 / 41

CPU Operation Address
bus

Effect

Set address 0x100 nothing

CE# Low 0x100 Chip selected

OE# Low 0x100 Data on bus after time “t"

CE# OE# High --- Chip disabled

About “t”, check CPU wait states

Parallel NOR Flash

● needs a special sequence for
erase and write operations,

● not that fast, but it’s simple to read,

 volatile f_uint16 *ptr = 0x100;
 f_uint16 read_value = *ptr;

32Mbit (4MB)
16 bit words

● this “amcore” board selected model is a 16 bit word
addressable Flash

Step 2 – non volatile memory

Page 10 / 41

● as non-BGA package, you have NOR parallel flash until 1 Gb (256MB)

● parallel NOR are erased in blocks, but can be randomly read,

● parallel NOR throughput is know to be not high, with some tricks can be improved a bit,

Step 3 – external RAM Page 11 / 41

Depending on the CPU, it can be SDRAM, DDR, DDR2, 3 etc. For this sample board, mcf5307 forces to use a SDRAM,
so a 16MBytes SDRAM has been selected

● dynamic RAM are formed from transistor/capacitor cells, organized in columns and rows,
and require refresh cycles from CPU (while SRAM not),

● refresh is auto-magically handled from CPU,

● understanding how column / row addressing
works can be not that simple,

● fortunately, CPU datasheets reports tables that says,
depending on the SDRAM model to connect, how
the CPU-SDRAM connections should be done.

Step 4 – customizations

Page 12 / 41

 In this step you decide how to customize the board, first main components (CPU, FLASH, RAM) has been
selected, so now comes the "specialization" of the board.

I.e., the “amcore” reference board for this sessions still adds:

● a parallel network MAC + PHY chip,

● a i2c RTC chip + cell battery,

● a generic connector to expand
functionalities of the board
in a later step,

● other peripherals are generally added in embedded applications, as SD CARDS, i2c serial eeproms, audio
codecs, accelerators, gps, wifi modules, USB, etc etc etc, but they of course must be supported from the CPU.

A development approach

Page 13 / 41

 1) Choose a CAD

2) Schematic diagram
3) Electric Error check and module assignment

4) move to PCB CAD side
5) route all the connections
6) perform PCB error checks

Ok, proceed for the “manufacturing”

7) generate “gerber” files
8) look for best price/quality PCB prototype producer
9) order, and after some days you will receive your PCB

10) solder components, debug for errors step by step.

In case of hw issues, you can fix them with temporary hacks, and then, go back to point 7.

1 - Choose a CAD Page 14 / 41

 Cheap CAD or free / opensource:

● Kicad (win, mac, linux), opensource, free, irc/freenode #kicad
● non-free, closed, but quite cheap license,
● several others

● other non-free CAD’s are available for every prices

● CAD is just a tool.

For the “amcore” board, Kicad has been selected.

2 - Schematic diagram

Page 15 / 41

 A way to start is from power supply, from where all the current is coming, and then connecting power to CPU. So now a
day you would go with a buck converter:

● good point, mcf5307 just needs 3.3V,
● check input-output drop,
● filtering capacitors, see ESR ordering them,
● bypass (typ 100n) capacitors,
● power led

2 - Schematic diagram Page 16 / 41

Connect oscillator, pull-up/down, bootstrap options, debugger interface

● checking CPU datasheet to know what
are all the CPU connections to be done
can be a long task, that can introduce errors.

● diagrams of evaluation or similar boards
comes into help
(copying is often ok, understanding the
reason of each copied part improves the
knowledge).

2 - Schematic diagram

Page 17 / 41

 ● connect the non-volatile program memory
● using a parallel NOR, just wire the address bus, data bus, CE#, OE#, WE#, VCC, GND
● note that in this application, CPU A1 is connected to A0 of the Flash (16 bit flash). Also, CPU is BE.

2 ^ 22 = 4MBytes

2 - Schematic diagram Page 18 / 41

 Connecting the SDRAM memory

● connecting SDRAM can be difficult, even
looking on tables supplied from the
datasheet,

● development boards schematics
are a good basic guideline,
double check that all is correct,

● different configurations from development
boards as using multiple banks, requires
some more experience, and will introduce
also SW configutration issues,

2 - Schematic diagram Page 19 / 41

 CUSTOMIZING

● Select your special
“accessories”,

● follow datasheets
end especially
applications notes,

● customization can
still be done in a further
step, if a generic
expansion slot is added

2 - Schematic diagram

Page 20 / 41

 CUSTOMIZING

● one UART console port can be
added for debug purposes

● i.e. on “amcore” board, an i2c RTC has been
also added

● check application notes of additional IC’s

Finally
● just complete the electrical error check (ERC),
● perform other needed passes as assigning pcb

modules and move to PCB.

3 - PCB Page 21 / 41

 PCB DESIGN

● to start, it is not mandatory to be a professional and very experienced hardware designer,

● with some attentions and avoiding too high bus frequencies, a basic board even without a perfect
design should work.

● about how to design a PCB, there several good tutorials around.

● before you start you should focus on a PCB manufacturer, there is a big number of producers all over the world,
each of them have some constraints (min vias / track / drill sizes) i.e., you can go to some instant-quote sites,
insert your board data and check

● here the “amcore” used parameters

3 - PCB

Page 22 / 41

PCB DESIGN : JUST SOME HINTS

Entering the hardware design techniques is too wide for this talk session, and there are plenty of good tutorials and
application notes.

● a big ground plane could be on the whole 4h layer, so each ground connection can be easily done by a vias from
the top layer, it also helps on electromagnetic shielding, helps for power dissipation, and the like,

● power supply can stay in the top layer,
● all other digital signals could possibly stay in 2nd and 3rd middle layers,
● the above is not the more proper way but works. Some memory constructors suggest 6 layers and to keep each

signal layer next to a ground layer, etc etc. Increasing knowledge on PCB design will help anyway.

● resistors, 100n bypass capacitors, is possible to use hand-soldering pads
● 100nF BYPASS CAPACITORS: bypass capacitors must always be physically located near the IC to protect
● oscillator, follow, if any, the datasheet directions

3 - PCB

Page 23 / 41

 PCB DESIGN : BUCK CONVERTER

● using a micro / USB connector can be convenient,
(a fuse can be enough, no inversion protection
needed)

● arrange a good grounding to help heat dissipation,

● set correct width for tracks that need
keep high currents,

● there is much more hardware design theory to improve knowledge as you prefer.

3 - PCB

Page 24 / 41

PCB DESIGN : SDRAM ROUTING, TERMINATION RESISTORS ?

● there can be the need of terminators for both long tacks (reflection) or on short lines to avoid “rings”. There is a
huge high-speed signals theory behind, source series, middle or end parallel terminations, but let’s try to keep it
simple,

● some readings on memory constructor application notes can be useful, you can also see about this the famous

“High Speed Digital Design” - a Handbook of Black Magic – (Johnson – Graham),

● checking development boards here is very important. At least that solution works,

● considering only the short line rings issue, a series resistor near CPU is generally fine. You can set up PCB for it,

● on DDR memories things are a bit different, there are VTT and Vref involved and similar termination

strategies are used, but signal speed generally grow. More study on PCB design rules is required.

3 - PCB

Page 25 / 41

PCB DESIGN : SDRAM ROUTING, SOURCE TERMINATION RESISTORS ?

● things can work even without any resistor,

● some basic rules:

CPU Zo + Zterm. = Zline

For Zo, you have to find a compromise:

Zoh = (VDD – Voh) / Ioh, Zol = Vol / Iol

For Zline, there are calculators.

● as a pragmatic way, use a potentiometer in series in place of resistors, find the good termination value.

● there is much more hardware design theory to improve your knowledge, as you prefer

amcore: no terminations, acceptable rings

3 - PCB

Page 26 / 41

 PCB DESIGN : AUTO-ROUTING

Once the more critical parts are routed as preferred, launching auto-routing over the night can help to find the board
quite ready the morning after. Of course some unresolved connection will probably still be there and need to be
done by the human ability.

4 - BUILDING

Page 27 / 41

 POWER SUPPLY

● You can check CPU voltages are correct (tester),
without any load, so in case of further shorts
soldering components, with voltage that sits down,
you know the cause is not the power supply itself.

● A check by scope can help to see if the DC is clean,
in case not, check about filtering capacitor ESR and
check if some bypass capacitor is needed to
remove any unwanted noises.

● On other issues, check the P..S. datasheet and the example
schematics in it.

4 - BUILDING

Page 28 / 41

CPU

● put it carefully on the PCB, once well centered fix a corner with a small solder joint,
● check all sides to be well aligned, so fix the other corner and side by side solder all the pins.
● drag tin on the right and outside. Use a lot of solder paste, keep shiny solder tip, remove excess of tin in the tip.

Solder paste maintains shiny solderings. It will help tin to come away from shorts.
● if solderings are not brilliant, test different solder pastes.

4 - BUILDING

Page 29 / 41

 CPU and components around

● verify all the solderings by lens, for shorts or unconnected pin, fix where needed,
● solder bootstrap resistors, clock oscillator and any other components to have the CPU running,
● solder debug interface connector,
● power up again, and verify 3.3V are

still there, otherwise check for shorts.

● check soldering shape

 mm mils

4 - BUILDING

Page 30 / 41

 FLASH

● position it, do a temporary fix with tin in a corner, fix it on the other side,
● solder it with same technique used for the CPU (drag right and out), lens check, toothbrush + alcohol cleaning, power

up.

Tip: when there is too much tin, you can heat it and give
some rap / shots on the table (no need to hit the board,
just hitting the wrist is also good.

4 - BUILDING

Page 31 / 41

 SDRAM

Still same procedure can be used, position – fix – solder, (drag tin right and out), perform lens check, cleaning with
toothbrush and alcohol, try to power up and check 3.3V are stable.

4 - BUILDING Page 32 / 41

 FIRST PRELIMINARY CHECKS

● Pin to pin, ohm continuity,
● Board can be powered up. Re verify power is clean and stable (tester / scope on 3V3). Oscillator must be

running, a scope check can verify the frequency and the sanity of the waveform shape.

Next step is to connect the debugger / programmer (POD) and try to communicate
with the CPU, trying inspecting CPU internal SRAM (static RAM) and / or internal registers.

5 - DEBUG

Page 33 / 41

PARALLEL NOR FLASH - CHECK AND PROGRAMMING

● connect debugger, Internal CPU SRAM should be now accessible,

● a small binary tool can be loaded into CPU internal SRAM and executed from there trough some simple
debuggers commands / scripts,

● whatever tool to program target and debug on target step by step is ok (openocd is a common open solution).

● for the purpose, for the sample “amcore” board only open tools has been used, (gdb + BDM tools have been
used for this Coldfire board),

● a cheap hardware debugger / programmer that must be supported by the above tools

5 - DEBUG

Page 34 / 41

 Purpose of the initial binary tool is to verify the FLASH is well soldered. Tool must fit into internal SRAM of the CPU
(4 to 512KB), and must contain some algorithms to erase / program the flash.

Also, a minimal UART driver has been prepared for the “amcore” board. It has been used for both debug
and firmware upload, to update the flash memory content.

5 - DEBUG

Page 35 / 41

 SDRAM INIT

● before being able to write the Flash, SDRAM
should be initialized

● need to program the FLASH at least with a
bootloader, so SDRAM correctly initialized
is needed to keep an UART-uploaded data into
SDRAM before writing it to flash.

5 - DEBUG

Page 36 / 41

 SDRAM CHECK

● so SDRAM need to be tested with some basic test,

1) unfortunate situation, SDRAM is not working, is it
an HW or SW problem ?

2) be well sure the initialization sequence is correct
(see CPU datasheet, application notes and sources around)

3) some test algorithm can be prepared. Lens check,
fix and alcohol cleaning should be performed where needed

Try eventually lower bus clock speeds

Stil issues ? Loop to point 1 until this basic test passes.

BOOTLOADER

Page 37 / 41

 BOOTLOADER – U-BOOT

In this 4MB NOR parallel flash,
2 erase sectors of 64KB has been
reserved for the U-Boot bootloader
and his environment variables.

Now that all is up and running
it’s just all about software choices.

LOADING LINUX

Page 38 / 41

 FINAL STEP, LOADING LINUX

● mtd partitioning, 2 x 64KB sectors
has been reserved for u-boot,

● 46 sectors has been reserved for the kernel and
a basic ROMFS,

● last 1MB (16 sectors) for a minimal
jffs2 data partition

U-boot, 128KB

2,875 MB Kernel + ROMFS

1MB JFFS2 RW data partition

LOADING LINUX

Page 39 / 41

 LOADING LINUX

So, once programmed the
kernel partition (can be done
easily from a simple u-boot script),
and some U-Boot setup, should be
possible to see the kernel booting.

cat /proc/cmdline console=ttyS0,115200
init=/bin/init root=/dev/mtdblock3
rootfstype=romfs

That’s all Page 40 / 41

Thanks to everybody.

Special thanks to The Linux Foundation.

http://sysam.it/openzone/projects/amcore/amcore.html
angelo@sysam.it

mailto:angelo@sysam.it

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41

