Opensource in neuroimaging

Ben Dooks © 2017 Codethink Ltd.

Disclaimer / Warning

- I am not a medical profesional
- Research before attempting anything
- May not be legal in some areas

Introduction

Me

- Senior engineer and consultant at Codethink
- Linux kernel contributor

Why

- Brains (what does the 1.2kg in your head do?)
- Open hardware and software opens up study
- Involved in producing such a scanner

Caveats

- See previous warnings
- Not in depth
- Most eye-catching / top google examples used

Brains – not just tasty zombie food

- Neuroimaging is determing the brain properties
 - Structure
 - Function
 - Pharmacology
 - See also encephalography
- Why study the brain?
 - Medical
 - Psychology
 - Person/machine interface

Structure

- Difficult to view (without \$\$\$\$)
 - Non-invasive scans
 - fMRI
 - PET
 - x-ray
 - Invasive biopsy
- Open databases of medical scans
 - Wikipedia lists 3000
 - Data-sets at OpenfMRI (creative-comons)
 - Freesurfer tool for processing fMRI data

Neurons

- The hardware building blocks
 - Approx 1um size (excluding comunication links)
 - Several different types
 - Some specialisation per task
- Approx 80-100 billion per brain
- Communication
 - Links to more neurons (synapse)
 - Chemical (neurotramsitter)
 - Electrical (0.1-1V)

EEG

- Measures electrical activity at scalp
 - Number of electrodes attached to scalp
 - Reference electrode for signal difference
- Groups of neurons produce electrical waves
 - This is often 10-100uV range
 - Frequency is 1-100Hz (approx)
- EEG is simple
 - Non-invasive
 - Cheap equipment
 - Not pre-condition limit

EEG example (openbci.com)

- Open hardware
 - Kickstarted in 2013
 - Can add EMG and EKG
 - Evolving
- Open software
- Example ultracortex-mk-iv
 - Up to 16 channels
 - DIY or buy pre-built
 - Board not included

EEG example (openbci.com)

Open EEG projects

HackEEG

MEG

- Magnetic sensing
 - Most neurons make small magnetic fields
 - These are in the 10fT region
 - Can be more accurate than EEG
 - Similar time responses

Issues

- Standard background noise is 1000fT
- Shielding is necessary for systems
- This makes them expensive
- Not all neural activity produces detectable fields
- Is not currently cheap

Our big MEG project

- Why do this
 - Latest technology from late 1970s / early 1980s
 - Legacy devices becoming difficult to repair

Goals

- Improve the technology
- Use open-source where possible
- As much as possible open sourced

Why open?

- Started as a university research project
- Project longevity
- Peer review
- Concentrate on the hard problems
- Security (and seen to be secure)

Overview

- How it fits together
 - Data capture nodes
 - MEG
 - Other
 - Data streaming
 - Experiment control
 - Data storage
 - Real-time view

Hardware

- Physical scanner closed design
 - No longer needs liquid helium
- Aquisition to 600 channels, 24bit data, 72kHz max
 - About 3400KB/sec per 8 channel node max
 - 250MB/sec for complete cluster
- ARM and FPGA data gathering nodes
 - Needed many, ARM is low power
 - FPGA for quick real-time solutions
- Comodity PC and PC servers for the rest
 - No need to specialise these

Software

- Debian based
 - Supports ARM and x86
 - Stable and maintained
 - Customisable
 - Netboot No hard-discs allowed, not enough flash
 - Already had debian developers on hand
- Standard data recording (HDF5)
 - Widely used and well understood
 - Designed for large time-based data-set

Software #2

- Qt & OpenGL
- Python packages
 - NumPY
 - Arrow
 - H5Py
- U-boot
- Some custom control software
 - Synchronisation
 - Data streaming and verification

Data display

FPGA

- Real-time sampling
 - 3ns between nodes
- OpenCores
 - Wishbone bus
 - SPI
 - IIC
 - PCle to WB
- Vendor IP for PCIe
- Rest is closed VHDL

Kernel

- Easy to update
 - Vendor kernel already close to mainline
 - Tracking mainline has required a few API updates
 - Whole process has been easy
- Simple driver to split PCIe up
 - Instantiate SPI, GPIO and I²C devices
 - Provide stream device for data stream
 - Add sysfs files to access overall state

Review

- Debian is a good base
 - Upgraded from 6 to 9
- Open FPGA tools still lacking
 - No open toolchain or IP cores
 - Makes reproducable builds difficult
 - The PCIe core was difficult to debug
- Open PCB design
- At the start this seemed large
 - Technology has improved in 5 years.