Opensource in neuroimaging

Ben Dooks
© 2017 Codethink Ltd.
Disclaimer / Warning

- I am not a medical professional
- Research before attempting anything
- May not be legal in some areas
Introduction

• Me
 – Senior engineer and consultant at Codethink
 – Linux kernel contributor

• Why
 – Brains (what does the 1.2kg in your head do?)
 – Open hardware and software opens up study
 – Involved in producing such a scanner

• Caveats
 – See previous warnings
 – Not in depth
 – Most eye-catching / top google examples used
Brains – not just tasty zombie food

- Neuroimaging is determining the brain properties
 - Structure
 - Function
 - Pharmacology
 - See also encephalography
- Why study the brain?
 - Medical
 - Psychology
 - Person/machine interface
Structure

• Difficult to view (without $$$$)
 – Non-invasive scans
 • fMRI
 • PET
 • x-ray
 – Invasive biopsy

• Open databases of medical scans
 – Wikipedia lists 3000
 – Data-sets at OpenfMRI (creative-commons)
 – Freesurfer tool for processing fMRI data
Neurons

- The hardware building blocks
 - Approx 1um size (excluding communication links)
 - Several different types
 - Some specialisation per task
- Approx 80-100 billion per brain
- Communication
 - Links to more neurons (synapse)
 - Chemical (neurotransmitter)
 - Electrical (0.1-1V)
EEG

- Measures electrical activity at scalp
 - Number of electrodes attached to scalp
 - Reference electrode for signal difference
- Groups of neurons produce electrical waves
 - This is often 10-100uV range
 - Frequency is 1-100Hz (approx)
- EEG is simple
 - Non-invasive
 - Cheap equipment
 - Not pre-condition limit
EEG example (openbci.com)

- Open hardware
 - Kickstarted in 2013
 - Can add EMG and EKG
 - Evolving
- Open software
- Example ultracortex-mk-iv
 - Up to 16 channels
 - DIY or buy pre-built
 - Board not included
EEG example (openbci.com)
Open EEG projects

OpenEEG
openeeg.sourceforge.net
EEG for the rest of us!

Brainstorm

Olimex

HackEEG
MEG

- Magnetic sensing
 - Most neurons make small magnetic fields
 - These are in the 10fT region
 - Can be more accurate than EEG
 - Similar time responses

- Issues
 - Standard background noise is 1000fT
 - Shielding is necessary for systems
 - This makes them expensive
 - Not all neural activity produces detectable fields
 - Is not currently cheap
Our big MEG project

• Why do this
 – Latest technology from late 1970s / early 1980s
 – Legacy devices becoming difficult to repair

• Goals
 – Improve the technology
 – Use open-source where possible
 – As much as possible open sourced
Why open?

- Started as a university research project
- Project longevity
- Peer review
- Concentrate on the hard problems
- Security (and seen to be secure)
Overview

- How it fits together
 - Data capture nodes
 - MEG
 - Other
 - Data streaming
 - Experiment control
 - Data storage
 - Real-time view
Hardware

• Physical scanner closed design
 – No longer needs liquid helium

• Acquisition to 600 channels, 24bit data, 72kHz max
 – About 3400KB/sec per 8 channel node max
 – 250MB/sec for complete cluster

• ARM and FPGA data gathering nodes
 – Needed many, ARM is low power
 – FPGA for quick real-time solutions

• Commodity PC and PC servers for the rest
 – No need to specialise these
Software

- Debian based
 - Supports ARM and x86
 - Stable and maintained
 - Customisable
 - Netboot - No hard-discs allowed, not enough flash
 - Already had debian developers on hand

- Standard data recording (HDF5)
 - Widely used and well understood
 - Designed for large time-based data-set
Software #2

- Qt & OpenGL
- Python packages
 - NumPY
 - Arrow
 - H5Py
- U-boot
- Some custom control software
 - Synchronisation
 - Data streaming and verification
Data display
FPGA

- Real-time sampling
 - 3ns between nodes
- OpenCores
 - Wishbone bus
 - SPI
 - IIC
 - PCIe to WB
- Vendor IP for PCIe
- Rest is closed VHDL
Kernel

• Easy to update
 – Vendor kernel already close to mainline
 – Tracking mainline has required a few API updates
 – Whole process has been easy

• Simple driver to split PCIe up
 – Instantiate SPI, GPIO and I²C devices
 – Provide stream device for data stream
 – Add sysfs files to access overall state
Review

- Debian is a good base
 - Upgraded from 6 to 9

- Open FPGA tools still lacking
 - No open toolchain or IP cores
 - Makes reproducible builds difficult
 - The PCIe core was difficult to debug

- Open PCB design

- At the start this seemed large
 - Technology has improved in 5 years.