
Zephyr™ OS Configuration
via Device Tree
Andy Gross - Linaro IoT

Zephyr is a trademark of the Linux Foundation. *Other names and brands may be claimed as the property of others.

Configuration in Zephyr today

• Configuration is spread out across the system.

• Most configuration is hardcoded.

• Difficult to deal with device multiples.

• Definitions come from multiple file sources, (CMSIS, vendor includes, etc)

• Not extensible for similar boards or SoCs.

Using device tree for Zephyr OS configuration
• Device tree is architecturally neutral

• Less need for Kconfig options as specific config comes from DTS

• Device tree can describe any device node

• Device description is extensible

• Other layers could use device tree information (apps, hal, etc)

• Adding new boards/SoCs is easier

Required tooling for device tree usage
• Use the available configuration sources where applicable (CMSIS, vendor files,

etc)

• Use the C preprocessor to leverage those configuration sources

• Build the target configuration from the processed device tree information

Collect
include

information

Preprocess
and replace

Final DTS
containing raw

data

Build data
structures

*Other names and brands may be claimed as the property of others.

DTS and DTSI files

YAML

Include files

Compiled DTS

Generated Include

Generating include files

Using YAML in Zephyr

• Devices are described in DT and YAML.

• YAML gives a description of the contents of the node
•Definitions for properties
•Targets for extraction
•Format for output

• Allows for validation of DT contents.

YAML / DT Example

inherits:
 - !include uart.yaml
 - !include zephyr_devices.yaml

properties:
 - compatible:
 type: string
 category: required
 description: compatible strings
 constraint: "arm,cmsdk-uart"

 - reg:
 type: array
 description: mmio register space
 generation: define
 category: required

 - interrupts:
 type: array
 category: required
 description: required interrupts
 generation: define
...

 uart0: uart@40004000 {
 compatible = "arm,cmsdk-uart";
 reg = <0x40004000 0x14>;
 interrupts = <0>;
 zephyr,irq-prio = <3>;
 baud-rate = <115200>;
 };

Generated Output

/* uart@40004000 */
#define ARM_CMSDK_UART_40004000_BASE_ADDRESS_0
#define ARM_CMSDK_UART_40004000_BAUD_RATE
#define ARM_CMSDK_UART_40004000_IRQ_0
#define ARM_CMSDK_UART_40004000_SIZE_0
#define ARM_CMSDK_UART_40004000_ZEPHYR_IRQ_PRIO
#define ARM_CMSDK_UART_40004000_BASE_ADDRESS
#define ARM_CMSDK_UART_40004000_SIZE

/* Fixup */

#define CMSDK_APB_UART_0_IRQ
#define CONFIG_UART_CMSDK_APB_PORT0_IRQ_PRI
#define CONFIG_UART_CMSDK_APB_PORT0_BAUD_RATE

0x40004000
115200
0
20
3
ARM_CMSDK_UART_40004000_BASE_ADDRESS_0
ARM_CMSDK_UART_40004000_SIZE_0

ARM_CMSDK_UART_40004000_IRQ_0
ARM_CMSDK_UART_40004000_ZEPHYR_IRQ_PRIO
ARM_CMSDK_UART_40004000_BAUD_RATE

Current state of development

• Device tree support now in Zephyr 1.7.0.

• DTS python parsing script/library is now part of Zephyr

• Additional Python scripts generate the include information from the
DTS->DTS passthrough

• YAML used to describe contents of device nodes

• Using temporary fixup file to map generated data to driver instances

• Support for ARM Beetle, TI CC3200, STM32L476RG, and NXP Kinetis

Work for the near term
• Cleanup the configuration directories for the boards as the required existing

config and board files are retired. This will most likely involve complete removal
of the board/ directories.

• Leverage the generated files and use this information to initialize drivers. This is
ongoing.

• Generate overarching config options for devices based on DT status.

• Add platform data and structure support.

*Other names and brands may be claimed as the property of others.

Questions?

