Wireshark Packet Dissectors for the Latest V2X Message Protocol

Automotive Linux Summit 2017
May 31-June 2, 2017, Tokyo, Japan

Steve Kwon | CEO
Contents & Today’s Goal

- V2X (Vehicle to Everything)
- V2X Protocol Standards
 - Protocol Overview
 - ASN.1 and Protocol Encapsulation
- Wireshark Patches for the Latest V2X Protocols
 - Logical Link Control
 - IEEE 1609.3 - WAVE Short Message
 - IEEE 1609.2 - WAVE Security Service
 - IEEE 1609.3 - WAVE Service Advertisement
 - SAE J2735 Mar. 2016 - DSRC Message Set Dictionary
- Wireshark V2X Message Dissector Demo
- Conclusion & Summary

Today’s Goal
Understand the Latest V2X Protocols and How to Build own Analyzer
V2X (Vehicle to Everything)

- Radio Communication (DSRC) + Positioning System (GNSS/GPS) + Vehicle Status (transmission, steering angle, brake, ...)
- U.S. is progressing Vehicle-to-Vehicle (V2V) communications Mandate for New Light Vehicles
 - Notice of Proposed Rulemaking (NPRM) published at 01/12/2017, Comments Close at 04/12/2017

U.S. Department of Transportation
ITS Joint Program Office

V2X Protocol Standards - Overview

<table>
<thead>
<tr>
<th>Standard</th>
<th>Latest</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAE J2945/9</td>
<td>2017</td>
<td>Vulnerable Road User Safety Message Minimum Performance Requirements</td>
</tr>
<tr>
<td>SAE J2945/1</td>
<td>2016</td>
<td>On-Board System Requirements for V2V Safety Communications</td>
</tr>
<tr>
<td>SAE J2735</td>
<td>2016</td>
<td>DSRC Message Set Dictionary</td>
</tr>
<tr>
<td>IEEE 1609.2</td>
<td>2016</td>
<td>Security Services for Applications and Management Messages</td>
</tr>
<tr>
<td>IEEE 1609.3</td>
<td>2016</td>
<td>Networking Services</td>
</tr>
<tr>
<td>IEEE 1609.4</td>
<td>2016</td>
<td>Multi-Channel Operation</td>
</tr>
<tr>
<td>IEEE 1609.12</td>
<td>2016</td>
<td>Identifier Allocations</td>
</tr>
<tr>
<td>IEEE 802.11 (IEEE 802.11p)</td>
<td>2016</td>
<td>WAVE PHY and MAC</td>
</tr>
</tbody>
</table>
V2X Protocol Standards - ASN.1* and Protocol Encapsulation

*http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html

- IEEE 1609.3 and SAE J2735 use UPER (Unaligned Packet Encoding Rule)
- IEEE 1609.2 uses COER (Canonical Octet Encoding Rule)

=> It is almost impossible to read or understand without a packet analyzer

< V2X Protocol Encapsulation >
Wireshark

Wireshark is the world’s foremost and widely-used network protocol analyzer. It lets you see what’s happening on your network at a microscopic level and is the de facto (and often de jure) standard across many commercial and non-profit enterprises, government agencies, and educational institutions. Wireshark development thrives thanks to the volunteer contributions of networking experts around the globe and is the continuation of a project started by Gerald Combs in 1998. - https://www.wireshark.org

- Deep inspection of hundreds of protocols
- Live capture and offline analysis
- Multi-platform: Windows, Linux, OSX, ...
- Captured network data can be browsed via GUI or console
- The most powerful display filters
- Live data can be read from Ethernet, IEEE 802.11, ...
- Decryption support: IPsec, SSL/TLS, WPA/WPA2, ...
- Coloring rules can be applied to the packet list
- Output can be exported to XML, CSV, plain text, ...
- Dissector from ASN.1 (BER/PER, Aligned/Unaligned, asn2wrs.py*)

*https://wiki.wireshark.org/Asn2wrs
Wireshark Patches for the Latest V2X Protocols

GitHub - https://github.com/wayties/wireshark - “v2x” branch, based on 2.2.6 tag

- **packet-llc.c**: tweak for IEEE Std. 802, EPD

 IEEE Std. 1609.3 uses IEEE Std.802 EPD (EtherType Protocol Discrimination), so it needs a little tweak to call a dissector by ethertype without SNAP header

- **packet-wsa.c**: add support for WAVE Service Advertisement

 WAVE Service Advertisement (WSA) dissector generated from ASN.1
 Ref. IEEE Std. 1609.3 - 2016

- **packet-wsm.c**: add support for WAVE Short Message

 WAVE Short Message (WSM) dissector generated from ASN.1 files
 Ref. IEEE Std. 1609.3 - 2016

- **packet-ieee1609.c**: call WSA dissector from IEEE 1609.2

 When WSA header version is 0x3X, it will call WSA dissector
 Ref. IEEE Std. 1609.3/2 - 2016

- **packet-ieee1609.c**: add support IEEE 1609.3 / 2

 IEEE 1609.3 WSM dissector and IEEE 1609.2 UnsecuredData and SignedData(Partial) by direct implementation
 Ref. IEEE Std. 1609.3/2/12 - 2016

- **packet-j2735.c**: add support for SAE J2735 DSRC Message Set

 SAE J2735 dissector generated from ASN.1 file and it will be called by IEEE 1609.2 Unsecured/SignedData
 Caution: It does’t not include any SAE J2735 related contents,
Logical Link Control

<table>
<thead>
<tr>
<th>IEEE 802.11 QoS</th>
<th>DSAP= 0xAA</th>
<th>SSAP= 0xAA</th>
<th>Control= 0x03</th>
<th>Protocol ID=</th>
<th>Ethertype</th>
</tr>
</thead>
</table>

LPD (LLC Protocol Discrimination)

Ethertype = 0x88DC : WSMP, 0x86DD : IPv6

IEEE 802.11 QoS

Ethertype

EPD (EtherType protocol discrimination)

```c
is_snap = (dsap == SAP_SNAP) && (ssap == SAP_SNAP);
...
/* tweak for IEEE Std. 802, EPD(EtherType Protocol Discrimination) */
if (!is_snap) {
    etype = tvb_get_ntohs(tvb, 0);
    next tvb = tvb_new_subset_remaining(tvb, 2);
    if (dissector_try_uint(ethertype_subdissector_table, etype, next tvb, pinfo, tree)) {
        proto_tree_add_uint(llc_tree, hf_llc_type, tvb, 0, 2, etype);
        return tvb_captured_length(tvb);
    }
    ...
}
```

epan/dissectors/packet-llc.c

- Try ethertype dissector without SNAP header
IEEE 1609.3 - WAVE Short Message (1/2)

<table>
<thead>
<tr>
<th>Subtype</th>
<th>WSMP-N-Header</th>
<th>WSMP-T-Header*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Version</td>
<td>PSID</td>
</tr>
<tr>
<td>4 bits</td>
<td>1 byte</td>
<td>4 bytes</td>
</tr>
</tbody>
</table>

*WSMP-T-Header format for TPID = 0

Wave Short Message Protocol (IEEE P1609.3)

Version: 11
PSID: 0x00000003
Transmit Power: 148
Channel: 172
Data Rate: 12
WAVE element id: WSMP (128)
WSM Length: 52995

Malformed Packet: WSMP

Expert Info (Error/Malformed): Malformed Packet (Exception occurred)
Malformed Packet (Exception occurred)
[Severity level: Error]
[Group: Malformed]

Configure Wireshark

```
configure.ac
epan/dissectors/CMakeLists.txt
epan/dissectors/Makefile.am // Add “wsm” to Config & Makefiles
epan/dissectors/asn1/CMakeLists.txt
epan/dissectors/asn1/Makefile.am
epan/dissectors/asn1/wsm/CITSapplMgmtIDs.asn*
epan/dissectors/asn1/wsm/CMakeLists.txt
epan/dissectors/asn1/wsm/Makefile.am
epan/dissectors/asn1/wsm/packet-wsm-template.c // Add “wsm” dissector
epan/dissectors/asn1/wsm/packet-wsm-template.h
epan/dissectors/asn1/wsm/wee.asn*
epan/dissectors/asn1/wsm/wsm.asn*
epan/dissectors/asn1/wsm/wsm.cnf
```

```
./autogen.sh
```

```
cd epan/dissectors/asn1
make // Generate “wsm” dissector
cd -
```

```
./configure
make // reconfigure and rebuild wireshark
```

*https://github.com/certificationoperatingcouncil/TCI_ASN1/tree/master/TCI%20Interface/ASN1/1609dot3
1. Fix ASN.1 file
2. Assign Root PDU: ShortMsgNpdu
 - Use #.PDU of “wsm.cnf”
3. Process Object Identifier of “Extension” Tag
 - Add id variable at “packet-wsm-template.c”
 - Use #.FN_PARS, #.FN_BODY of “wsm.cnf”
 - Add dissect_per_open_type with dissector for id
4. Fix “unused function” error
 - Use #.OMIT_ASSIGNMENT of “wsm.cnf”

Menu -> Analyzer -> Decode As...
Assign Ethertype 0x88dc to new “wsm” dissector
IEEE 1609.2 - WAVE Security Service

Direct Implementation of WSM dissector
- "ieee1609" dissector
- epan/dissectors/packet-ieee1609.c
- Naming and hierarchy that described in Standard

Direct Implementation of 1609.2 dissector
- Currently, Wireshark does not support OER
- "ieee1609dot2" dissector
- UnsecuredData : fully support
- SignedData : UnsecuredData and Length only

Menu -> Analyzer -> Decode As...
Assign Ethertype 0x88dc to new "ieee1609" dissector
IEEE 1609.3 - WAVE Service Advertisement

Do work similar to “wsm” dissector using “wsa.asn”
- “ieee1609dot3_wsa” dissector
- Fix ASN.1 file
- Assign Root PDU : SrvAdvMsg
- Process Object Identifier of “Extension” Tag
- Fix “unused function” error
- Call from “ieee1609dot2” dissector

```c
next tvb = tvb_new_subset_length(tvb, offset, datalen);
/* call_data_dissector(next tvb, pinfo, tree); */
wsa_version = tvb_get_guint8(tvb, offset);

/* When WSA version is matched */
if ((wsa_version & 0xF0) == 0x30)
    call_dissector(ieee1609dot3_wsa_handle, next tvb, pinfo, tree);
else
    call_data_dissector(next tvb, pinfo, tree);

epan/dissectors/packet-ieee1609.c
- After checking WSA version, call “wsa” dissector
```

Prepare J2735 201603 ASN.1 file
- Copyright, not publishable
- Issued: 2016-03-30
- http://standards.sae.org/j2735asn_201603/

1. Put ASN.1 file into epan/dissectors/asn1/j2735
2. Run c.sh
 - It will generate fixed ASN.1 file
3. Do work similar to “wsm” dissector
 - Assign Root PDU
 - Process Object Identifier Tag
 - Fix “unused function” error
Wireshark V2X Message Dissector Demo

DEMO

- MAP (MapData)
- BSM (Basic Safety Message)
- TIM (Traveler Information Message)
- WSA (WAVE Service Advertisement)
- IPv6 Echo Request over IEEE 1609.3
Conclusion & Summary

• Now, we have opened Wireshark dissector for the latest V2X message protocol with some limitations

• **DONE**
 - Logical Link Layer
 - IEEE 1609.3 - WAVE Short Message
 - IEEE 1609.2 - WAVE Security Service - Unsecured & Signed (Partial Implementation)
 - IEEE 1609.3 - WAVE Service Advertisement
 - SAE J2735 Mar. 2016 - DSRC Message Set Dictionary

• **TODO**
 - IEEE 1609.2 - WAVE Security Service - Full Direct Implementation
 - or implementation OER (Octet Encoding Rule) support of asn2wrs.py
Thank you

5F, 320 Gangnam-daero Gangnam-gu,
Seoul, 06252 Republic of Korea
Contact: CEO, Steve Kwon