About Me

• Software Engineer @ Cloudera, Integration Engineering Team

• PMC Member @ Apache Bigtop (integration for the Hadoop ecosystem)

• PPMC Member @ Apache Sentry (incubating)
“Hardware and Software, Engineered to Work Together”
—Oracle
Appliances

• Hardware & software, pre-integrated, pre-configured

• May seem counter-intuitive to programmers, because we value:
 - Modularity
 - Portability
Appliances

• There are real benefits for a lot of use cases:
 – Less time and money than bespoke installations
 – Designed and supported as a single, holistic system
“Virtual Hardware and Software, Engineered to Work Together”

—This Guy
Virtual Appliances

• At least a file-system image, software pre-installed and pre-configured

• Depending on the platform, it may also specify:
 − RAM, CPU and other hardware
 − Network configuration
Virtual Appliances

- Virtual Appliances also have benefits:
 - Tested and distributed as (mostly*) an entire system
 - (Mostly*) requires no setup or external dependencies

* The most important thing to remember about my talk
Use Cases

• Training environment

• Testing & development platform

• Distribution artifact

• Reference installation

• Demonstrations
Platforms

Hypervisors, Operating Systems and Tools
Hypervisors

Type 1
Hypervisor runs in kernelspace.
Guests run their own kernel.

Type 2
Hypervisor runs in userspace.
Guests run their own kernel.

Type 3 (I'm coining this term)
Hypervisor partitions host OS.
Guests run their own userspace.
Other Platforms

• Live media

• Hardware emulators

• Cloud platforms
Host Systems

• Can you store large disk images? (more on this later)

• Can you provide sufficient RAM, CPU, disk? Host 64-bit guests?

• Are Intel VT-X / AMD-VT extensions supported / enabled?

• Be aware of OSs designed to be hosts: SmartOS, CoreOS, etc.
Guest Operating Systems

• A free-as-in-libre OS can be redistributed ⇒ UNIX-like

• Linux is very common: CentOS, Ubuntu, minimalist distros, etc.

• Also consider BSD / Solaris variants:
 - They emphasize the whole system, but are as widely supported
OSV, from Cloudius Systems

- BSD-licensed with POSIX-like API / Linux system calls – but no fork()

- Single process in kernel-space (can be an OSV-optimized JVM)
 - No spin-locks, time-sharing, etc.
OSV, from Cloudius Systems

- OSV-optimized Memcached outperforms conventional install 3.9x

- Common Redis operations perform 80% better

- Capstan images add 12-20 MB and 3s of build time to your application

- "Hello, world!" boots, runs and shuts down in less than a second
Tools: Packer

- Packer (packer.io), from Hashicorp
 - Actively developed and very general-purpose
 - A wide range of “Builders” to target most common platforms
 - “Provisioners” allow you to reuse infrastructure code (shell, chef, etc.)
Tools: SUSE Studio

• SUSE Studio (susestudio.com)
 – Web application for building Linux images
 – Open-source back-end: KIWI (en.opensuse.org/Portal:KIWI)
Tools: Serverspec

- Serverspec (serverspec.org)
 - Testing for infrastructure software (and virtual appliances)
Virtual Hardware

Swap space, networks, CPUs
Swap Partitions

• Swapping allows you to get by with less RAM, but...

• Swapping too aggressively will kill performance, so...

• Use a swap partition, but set swappiness as low as possible!

 - Don't rely on the host to swap your RAM for you
Swappiness in the Linux Kernel

<table>
<thead>
<tr>
<th>Value</th>
<th>< 2.6.32-303</th>
<th>≥ 2.6.32-303</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Last resort</td>
<td>Never swap</td>
</tr>
<tr>
<td>1</td>
<td>Low swappiness</td>
<td>Last resort</td>
</tr>
<tr>
<td>100</td>
<td>Maximum</td>
<td>Maximum</td>
</tr>
</tbody>
</table>
Virtual Network Adapters: NAT

- Uses host as proxy, connections can only be opened from inside
 - Very portable
 - For client-only appliances
Virtual Network Adapters: Bridged

- VM appears to your network as a peer of your host
 - Very portable
 - Very flexible
 - Raises security concerns
Virtual Network Adapters: Host-only

- Can communicate with host (and maybe other VMs)
 - Secure and flexible
 - No Internet
 - Can be very host-dependent
Virtual Networks: Port Forwarding

• VirtualBox embeds host→guest port forwarding in the appliance configuration

• Allows users to type 'localhost' in their own browser but connect to the VM
 - Even a NAT'd VM!

• Be aware of how addresses may interpreted by different clients
Virtual Networks: IP Resolution

- http://10.0.2.15/index.html: NAT'd guest only

- http://127.0.0.1/index.html: guest or host w/ port forwarding

- http://192.168.0.3/index.html: everywhere w/ bridged
Virtual Networks: Hostnames and DNS

- Some software requires a consistent hostname – this can be a problem
 - Configuring statically means you can't "seed" clusters
 - Randomize hostname at boot? (slow boot, inconsistent hostnames)
Virtual Networks: Hostnames and DNS

- Will users have to do anything special on their clients?
 - Add it to /etc/hosts (or equivalent), or DNS

- On Docker, users may have to specify --hostname=
Virtual CPUs

- Some instructions not available, “cores” vs “cpus”

- Specify the minimum required to run things sufficiently well

- Encourage users to increase this / require it for certain options

- Virtual CPUs do not have all the same instructions! (esp. virtualization)
Other Hardware

• Devices may not always be the same across similar hypervisors!
Polishing and Publishing

Hypervisor Tools and Preparing Disks
Hypervisor Tools

- Host↔Guest integrations
 - Copy / paste, drag & drop
 - Cursor capture / desktop integration
- Shrinking disks
VirtualBox Guest Additions

- Kernel headers and running kernel must match

 yum install -y dkms gcc kernel-devel make bzip2
 mkdir /media/cdrom
 mount -r /dev/sr0 /media/cdrom # may be sr1 or other
 (cd /media/cdrom && env KERN_DIR=
 /usr/src/kernels/`uname -r` sh
 ./VBoxLinuxAdditions.run)
VMWare Tools

- License requires that you use VMWare to build your appliance (Packer does)

```bash
echo > /etc/yum.repos.d/mware-tools.repo <<EOF
[vmware-tools]
name=VMWare Tools
baseurl=http://packages.vmware.com/tools/esx/latest/rhel6/x86_64
gpgkey=http://packages.vmware.com/tools/keys/VMWARE-PACKAGING-GPG-RSA-KEY.pub
gpgcheck = 1
EOF

yum install -y vmware-tools-*
```
Clean Up

- VMs don't need firmware and many other common packages
 - e.g. consider using redhat-lsb-core instead of redhat-lsb

- Delete caches and log files that get written during setup
 - e.g. .bash_history, /var/yum/cache, etc.
Zeroing Disks

- Minimizes a copy-on-write FS and enables better compression

- VMWare tools: `vmware-toolbox-cmd disk wipe /

- Everything else:

```
cat /dev/zero > zero.fill
sync; sleep 1; sync
rm -f zero.fill
```
Defragmentation (Back to the 90's!)

- Defragments the copy-on-write device, not the file system

- **VirtualBox**: VBoxManage modifyhd *.vdi --compact # host

- **VMWare**: vmware-toolbox-cmd disk shrink / # guest

- **Qcow2**: qemu-img convert -O qcow2 *.raw output.qcow2 # host

 - Packer does this for you - better
Sharding

- Some file systems can't handle files as large as many VMs
 - FAT32 is still common on flash drives: has a limit of 4 GB
 - VMWare provides the option to shard the disk into 2 GB chunks
Compression

• Some archive / (de)compression tools can't handle big files either

 – Large tar.gz and zip files are not portable between implementations

 – I recommend using 7-zip (at least the tool, but also the format)
Other Thoughts

Suggestions and Common Gotchas
Interfaces: Embedded Web UI

- Embed a web interface with tutorials, resources...
- Buttons for common options, etc.
- Plan on not having Internet access / port forwarding
Interfaces: Desktop Environment

- Dependent on networking, hitting a web UI may not be ideal

- Some tasks are not suited to CLI or a web UI

- A desktop environment is heavy, but is always useful
 - Consider using VNC, or SSH X-Forwarding for other platforms
Mirror All The Things!

• Be able to recreate the entire system sans-Internet

 - Third-party tools may disappear or change without warning

 - You may want to recreate old versions

• Archives of everything: your own software, all dependencies
Mirror All The Things!

- Mirrors also decrease build time: downloading a whole OS is a big deal

- Lock in one consistent version with OS install media + package repositories

- You may want to uninstall your mirrors before publishing!
Beware Reboots!

- Beware of settings that do not persist across reboots!
 - Swappiness, SELinux
- Upgrading the kernel during a build doesn't apply until a reboot
- If you have a first-boot procedure, make sure subsequent boots work well!
Centralizing Distributed Systems

- Distributed systems are hard: partial failure
- Centralize a distributed system: partial failure = total failure
- Reboots appear data-center wide, suspends make time appear to stop
Centralizing Distributed Systems

• In general, plan for such weirdness

• Run an NTP daemon (also required for using time-based cryptography)

• Consider having a “VM” mode to work around exceptional behavior
Closing Thoughts

• The underlying platform really makes a difference

• Collect feedback from a broad spectrum of potential users

• Test, document, automate (like you always do... right?)

• Simply: projects should provide virtual appliances
Thank you
mackrorysd@apache.org
@SeanMackrory