
Use-Case Power Management Optimization:
Identifying & Tracking Key Power Indicators

ELC-­‐E	
 Edimburgh,	
 2013-­‐10-­‐24	

Patrick	
 Ti:ano	

DRAFT!!!
• This is a draft version of the presentation

• Practical examples are still missing, but will be ready for
the show! (plus further adjustments)

• Sincere apologies for the inconvenience!

Problem Statement
• Wireless Embedded platforms performances keep

increasing
•  Multi-core processors (MPU / GPU) up to 2GHz+, H/W accelerators
•  High-Speed RAM (LPDDR3, Wide I/O) & peripheral buses (USB3)

• But power and thermal budgets remain roughly the same
•  Mobile phone: ~5W, case temperature < 45ºC, 1-day of active use

•  => Power Management becomes the critical element.

What’s on the menu today?
• No meat, no fish, only power management stuff 

•  Starter
•  Critical Key Performance Indicators (KPI)

•  Main dish
•  Use-Case PM Optimization Methodology

•  Stuffed with practical examples & Thermal Management considerations

•  Dessert
•  Final Thoughts & Recommendations

Critical KPI (Key Power Indicators)

Statistics profiling platform activities, relevant
to Power Management

Running Clocks
 # cat /sys/kernel/debug/clock/summary
ocp_abe_iclk aess_fclk 98304000 27!
per_abe_nc_fclk dpll_abe_m2_ck 98304000 0!
div_ts_ck l4_wkup_clk_mux_ck 1200000 1!
l4_wkup_clk_mux_ck sys_clkin_ck 38400000 6!

lp_clk_div_ck dpll_abe_m2x2_ck 12288000 0!
l4_div_ck l3_div_ck 100000000 62!
l3_div_ck div_core_ck 200000000 47!
dpll_mpu_ck sys_clkin_ck 700000000 1!

•  Track running power resources
•  Clocks, DPLL, power switches, voltage regulators, …

•  Highlight unnecessary running clocks & resources
•  Root cause of power switch(es) & voltage regulator(s) maintained ON

•  HW dependencies

C-States (Idle States) Statistics
cat /sys/devices/system/cpu/cpu0/cpuidle/state*/usage
208814669!
1124298!
2263801!
22351425!

cat /sys/devices/system/cpu/cpu0/cpuidle/state*/time
133059448774!

3700489912
9190480361
943146521818

•  Highlight
•  Cumulated time spent in each low-power states
•  Cumulated number of transitions into each low-power states

•  Validate how much and deep CPU is able to sleep

Operating Point (OPP) Statistics
cat /sys/devices/system/cpu/cpu0/cpufreq/stats/time_in_state
350000 1086631!
700000 410910!

920000 13505!
1200000 401071!

cat /sys/devices/system/cpu/cpu0/cpufreq/stats/total_trans
132618!

•  Highlight
•  Cumulated time spent in each OPP (pre-defined [MHz/V] set)
•  Cumulated number of OPP transitions

•  Assess processing requirements (low/medium/high MHz)
•  Assess processing profile (bursty vs smooth)
•  Monitor thermal management throttling

CPU & HW Accelerators Loads
CPU: # cat /proc/stat

cpu 7465 358 8079 3748103 6510 125 3458 0 0 0!
cpu0 3713 158 4943 1868346 2681 125 3450 0 0 0!

cpu1 3752 200 3135 1879757 3829 0 8 0 0 0!
…

Other HW acc.: (GPU/DSP/ISP/…): proprietary / not standard
instrumentation 

•  Highlight
•  Processing scheduling over time

•  Processing requirements (low / medium / high / … MHz)
•  Most demanding applications – services / performance bottleneck

•  Lags, low frame rate, unresponsiveness, …
•  Root cause of Thermal Management Throttling

•  Validate use-case modeling of activities

Memory Bandwidth
•  Usually HW / Proprietary non-standard instrumentation 

•  Track memory / bus occupancy
•  Data bus load (MB/s)
•  Memory / Bus latencies

•  Highlight potential root cause of Lags, low frame rate,
unresponsiveness, …

•  Validate estimated bus & memory power consumptions

Interrupts
 # cat /proc/interrupts
 CPU0 CPU1 !
 39: 6 0 GIC TWL6030-PIH!
 213: 22218 0 GPIO wl1271!
 393: 0 1 twl6040 twl6040_irq_ready!

IPI1: 22086 94686 Rescheduling interrupts!
IPI3: 68462 59269 Single function call interrupts!
 LOC: 816383 411488 Local timer interrupts

•  Track peripheral activities over time

•  Highlight
•  Unexpected interrupt sources / rates
•  Potential root cause of reduced usage of CPU low-power states
•  Potential root cause of High latency / performance degradation

•  Validate use-case MPU interrupts modeling

Timers
 # cat /proc/timer_stats
 # cat /proc/timer_list

•  Track CPU wakeup sources and rates

•  Highlight
•  Unnecessary CPU wakeup sources
•  Potential root cause of reduced usage of CPU low-power states
•  Potential root cause of High latency / performance degradation

Temperatures
cat

•  Track various temperature sensors
•  CPU, GPU, PCB, SDRAM, case, …

•  Highlight power and performance degradation due to over-heating /
thermal management throttling
•  Power consumption increases a lot (explodes?) with temperatures

•  Thermal runaway

Use-Case Power Management Optimization:
Proposed Methodology

Modelize
•  Define critical use-cases for your platform

•  MP3, AV-Payback, 3D Gaming, Capture, Idle, Voice-call, Web Browsing …

•  Create a power model of your platform
•  MPU / GPU / Bus / Memory / Peripherals power consumption

•  Static (leakage), Dynamic (= f(MHz))
•  Temperature

•  Create a power model of targeted use-cases
•  Split use-case into simple atomic functions (slices)

•  Required peripherals, processing loads and profiles, memory / bus bandwidth, data transfer
sequence diagram, …

•  Must be measurable onboard

•  Define power targets and thermal budget per use-case
•  Generated from power model

Instrument
•  SW

•  Kernel
•  Power Management Frameworks
•  Scripts to reproduce use-cases
•  User-space tools to collect and process power data

•  See omapconf example

•  HW
•  Lab equipment with high-resolution current probes
•  Sense resistors to measure current &voltage simultaneously
•  Temperature sensors (embedded, external)
•  HW trace
•  Embedded power measurement capabilities is a plus

Automate
•  Automation is KEY

•  Apples must be compared to apples
•  Power, voltages, currents are analog variables

•  Inherent variations in measurements
•  Measurements should be repeated and averaged before analysis

•  Long, annoying, approximate & source of error if not automated!
•  Bad practice examples (real ):

•  Power consumption of 10 different rails for 10 different use-cases reported by
hand for measurement equipment to test report

•  boot time measured with a simple watch

Characterize Silicon raw performances
•  Raw Leakage current & dynamic consumption (mA / MHz / V)

•  I/O
•  Low-power Retention states
•  CPU (Dhrystone, …), GPU (GLBench, …), other processing unit(s)
•  Bus
•  Cache, RAM
•  Peripherals
•  Temperatures

•  To assess power model and power targets
•  Based on estimated Silicon power performances
•  Consider process corners / worst-case

Assess Power Model
•  Compare raw Silicon power performances to estimates

•  Refine power model with raw Silicon power performances
measurements until converged

•  Re-generate power targets accordingly

Measure use-cases
•  Take multiple measurements of a same use-case

•  Check that all measurements are in a same ballpark
•  Not exceeding ±5%
•  Example: 3 samples of a same use-case showing 50% to 100% variation

between measures
•  Bad practice: report the average value (real)
•  Good practice: report issue with the measurement setup

•  Collect and save all useful KPI statistics, for further analysis.

Analyze KPI for Leakage
•  Static Power Consumption (a.k.a. leakage) always first

•  Ensure no power is wasted
•  Supplied Voltages
•  Miss-configured I/O

•  Unused I/O not in high-impedance state, short-circuit
•  Bad pull-up /pull-down configuration:

•  Dual (at each end), combined up + down, unnecessary

•  Running clocks / DPLL instead of idle
•  Unused logic powered ON / not retained
•  Unused Voltage regulators left ON
•  Low-power states usage / Idle policies
•  SDRAM: self-refresh / power-down / other IP-specific power features

Analyze KPI for Dynamic Consumption
• Once leakage is under control, chase for extra

processing / bottlenecks

• CPU / GPU / HW Accelerators
•  Supplied Voltages
•  Processes, timers, interrupts, sleep durations & levels
•  Processing loads (and profiles) vs estimations
•  CPU IPC performances (latencies, rates)
•  OPP statistics / DVFS and idle policies efficiencies
•  Cache efficiency

Analyze KPI for Dynamic Consumption
• Bus / SDRAM

•  Supplied Voltage
•  Assess loads vs estimations
•  Assess latencies
•  Assess idle duration
•  SDRAM: refresh cycle rates, …

• Filesystem

Analyze Temperature
• Keep temperature within expected limits for a given use-

case
•  Fine-tune DVFS policies
•  Shutdown unnecessary logic

• Heating increases power consumption
• Heating degrades performances

•  CPU/GPU throttling

Fix!
• Code
• Power Model

•  Iterate until targets and measurements converge
•  Discussions (negotiations) with architects and developers

•  Implementation? Power Estimations? Both?

•  Set an acceptable limit
•  Usually power targets cannot be reached or exceeded
•  Define when to stop optimization

Track
• Do not let power diverge again

•  Monitor power consumption over new releases until the end of the
development life-cycle

•  Be strong, reject patches hurting power
•  The same way patches hurting performances and stability are

• Yes, you’re never done! 
•  Tracking phase should be fully automated, ultimately

Example of Power Optimizations

• To be added

Conclusion &
Final Recommendations

Anticipate
• Chip and board shall be designed for power measurement

•  Accessible probe points on voltage rails
•  Use 0-ohm resistor as placeholders to be replaced by sense

resistors
•  Design power companion chip with

•  Embedded power sensors
•  HW debug logic to trace power states & transitions

•  Ultimately synchronized with SW markers

• SW shall be instrumented for tracing power management
decisions

Partition HW for Power
• Do not build house with a single light switch

•  Dedicated clock switch per peripheral
•  Peripherals grouped per use-case under power switch(es)
•  Avoid sharing scalable voltage regulator(s)
•  Use retention techniques to reduce sleep/wakeup latencies

• Voltage is KEY
•  Power is proportional to the square of V

•  P = a * C * V2 * f

Fine-tune policies
• The perfect policy does not exist

•  Default policies cannot perform nicely for all use-cases

• Default Linux upstream policies made for desktops &
servers, not embedded devices
•  Fine-tune parameters for critical use-cases
•  Develop your own policies

• Do not hesitate to detect use-case & switch policies on
the fly

Keep Temperatures Down
•  “Easier” to waste less power than find mechanical

solutions to dissipate more power
•  Embedded devices are not desktop PC or servers

•  No fan, only a case … and your skin …

• Power consumption increases with temperatures

• Minimize use of performance throttling

Battery is what really matters
•  Final goal is to optimize power consumption at battery level

•  Focus attention on main contributors
•  No need to save 30% of power on a rail that only accounts for 2% total

•  Think system, pay attention to side-effects
•  Doing a power optimization on one end may degrade it at another end
•  E.g.: reducing clock rates may lengthen active time and increase DPLL lock time

Q & A

Thank you!

