
FAST & SCALABLE EMAIL

SYSTEMS WITH APACHE SOLR

Arnon Yogev

IBM Research



Background

• IBM Verse is a cloud based business email system



Background – cont.

• Verse backend is based on Apache Solr

• Almost every user interaction with the email system 

is translated into Solr queries:

– Refresh inbox

– Search by keyword / person

– Filter emails with attachments

– Compose or reply to an email

– Delete an email

– …



Mission

• Support IBM Verse’s future growth in terms of 

stability, scalability and cost-effectiveness, by 

optimizing its Solr infrastructure and usage

Improved 
Performance

Increased 
Server Capacity

Reduced Cost 
per User



Premise

• Email search ≠ web search

– Mailboxes are private

– Main interactions are performed on latest emails

– Results are typically sorted by date



SETUP & 

ENVIRONMENT



Benchmark Framework

• Email Data Generator

– Generate synthetic email data that simulates an email 

corpus characteristics and distributions

• Indexer Module

– Index data into Solr using different indexing strategies

• Apache JMeter 

– Execute test scenarios based on real life usage statistics

Email Data Generator
Mailboxes Store 

(Lucene Index per 

owner)

Solr Cloud Instances 

(per indexing strategy 

and #users)



Benchmark Architecture

SolrCloud Cluster

Replication

ZooKeeper Ensemble

Driver



Approach

• Short & self-contained improvement cycles

• From low-hanging fruits to advanced functionality

Assess

Implement

Analyze



SCHEMA

OPTIMIZATIONS



Schema Optimizations

• Replace wildcard queries with boolean (hasX) fields

– Avoids iterating over millions of posting lists

– Result:

• Some queries improved by 20X (e.g. hasUrl)

• Some queries were not affected (e.g. hasStatus)

Before After

attachmentName:* hasAttachment:true



Schema Optimizations – Cont.

• DocValues for faceting / sorting

– Densely packed column-oriented fields

– Reduces memory consumption by field cache

– Result: OOM problems solved!

Field1 Field2 Field3

Doc1 1 2 3

Doc2 2 3 4

Doc3 4 3 2

Doc1 Doc2 Doc3

Field1 1 2 4

Field2 2 3 3

Field3 3 4 2

Row-oriented (Stored Fields) Column-oriented (docValues)



QUERY

OPTIMIZATIONS



Query Optimizations

• Filter Queries (fq) instead of main query (q)
– Cached independently in filter cache

– Score is not affected by the filtering action

• Use of Field List (fl)
– Specifies the list of fields to be returned

– Saves bandwidth and simplifies parsing

Before After

q = content:Apache

AND sender:Bob

AND deleted:false

q = content:Apache

& fq = sender:Bob

& fq = deleted:false



Query Optimizations – Cont.

• Avoid grouping queries when possible
– Simple & useful (e.g. group emails by threads), yet time consuming

– Consider query splitting

• Result: Query runtime improvement of up to 33%.

Before After

q = content:apache

& group.query = folder:inbox

& group.query = *:*

Query 1: q = content:apache

& fq = folder:inbox

Query 2: q = content:apache



INDEXING

STRATEGY



Indexing Strategy - Motivation

• Observation: Indexing emails is unique in the sense 

that mailboxes are private

• Data was indexed using various indexing strategies 

and several parameters were tested:

– Indexing scenarios running time

– Search scenarios running time

– Server side behavior: CPU, Memory, GC



User Mailboxes and Shards

• Data is divided into 5-node clusters

• User emails are assigned into a single cluster

• Initial designs indexed a user mailbox across all shards

• Solution: Each mailbox is assigned to a single shard

– Reduces load on each Solr node

– Significant improvement in query runtime



Indexing Strategy Alternatives

Collection per Mailbox Shard per Mailbox1 Collection / 1 Shard

1 Collection / N Shards

N-1

N Collections / 1 Shard

N-1



Indexing Strategy - Results

• 1 Collection / 1 Shard performed poorly

• Collection / Shard per mailbox strategies had the 

best performance, but failed to scale above ~2000 

mailboxes
– Solr / Zookeeper limitations

• Multi-collection strategies perform better than 

multi-shard strategies, and had better utilization of 

resources (CPU & Memory)
– Query running time difference of 8-32%



SORTED INDEX



Sorted Index - Background

• Observation: Most queries require sorting by date

– Example: Display emails in inbox

– Default sorting is by doc ids

• Solution: Keep the index sorted by email dates

– Sorting is not performed at query time

– Early termination when requested #results is reached

– The tradeoff: additional work during indexing



Sorted Index - Implementation

• Two modules were developed to extend Solr:

1. Sorting MergePolicy

2. Early termination (with / without grouping queries)

• Contributed to Solr, available in Solr 6

– SOLR-5730 - Make Lucene's SortingMergePolicy and 

EarlyTerminatingSortingCollector configurable in Solr

– SOLR-8621 - solrconfig.xml: deprecate/replace <mergePolicy> with 

<mergePolicyFactory>



Sorted Index - Results

• Runtime of queries that perform sorting by date 

improved by 6-23%

• Early termination in grouping queries did not show 

significant improvement

• No observable indexing time slowdown



MULTI-TIERED

INDEX



Multi-Tiered Index - Background

• Observation: Users are often interested in their 

recent emails

– Example: Inbox refresh, closest people etc.

• Solution: Index emails into tiers

– Archive tier contains all emails

– Recent tier contains recent emails

• Last week, last month, last quarter etc.

– Tiers can be placed on different HW



Non-Tiered Strategy

• N Collections

– Single-shard

– Each collection contains multiple mailboxes

N Collections / 1 Shard

N-1



Tiered Strategy

• N “Archive” collections + N “Last Month” collections

– Indexing is performed on both tiers

– Search is performed on the relevant tier per query date 
constraints 

N Collections / 1 Shard

N-1

2N Collections / 1 Shard

Archive

Recent
N-1

N-1



Tiered Strategy - Alternatives

Pros:

• Less collections to manage

Cons:

• Does not perform as well as 

multi-collection recent tier

Archive

Recent

N-1

Pros:

• Saves disk space

• Indexing to a single collection

Cons:

• Archive queries must merge results

• Emails should move from recent to 

archive tiers

Archive w/o Recent

Recent

N-1

N-1



Multi-Tiered Index - Results

• Queries that target the recent tier ran 2-15X faster 

• Indexing scenarios experience a ~2X slowdown. 

However, since indexing running time is < 25ms, 

the effect on user experience is minor

• Client side changes are required in order to have 

more queries use the recent tier

– Example: Keyword search



ADDITIONAL

RECOMMENDATIONS



Hardware Configuration

• Observation: SSD infrastructure leads to better 

performance, but higher server costs

• As improved performance results in a larger server 

capacity, and SSD gets cheaper, the question is 

which configuration optimizes cost per user

• Result: Storing the Solr instances on SSDs results in 

a significant runtime improvement, which 

translates to major cost per user savings



Solr Version

• Recommendation: Upgrade Solr version (at least) 

with every major release

– Ongoing support by the community

– Bug fixes and improved stability

– New features and APIs

– Enables to extend Solr and contribute new code

• Result: Improved stability and performance



SUMMARY



Monthly Cost per User

Gen 1 Gen2 (Non-

tiered, HDD)

Tiered, HDD Tiered, Mixed 

HW

Non-tiered, 

SSD

Tiered, SSD Tiered, HDD, 

Recent Tier 

Only

Tiered, Mixed 

HW, Recent 

Tier Only

MONTHLY COST PER USER

x

0.5x

0.375x

0.25x

0.1x



Lessons Learned

Make Solr perfect for your use case!

• Know your data

– What does it contain? How is it structured? 

• Know your user

– Who uses the system? How is it used?

• Start simple, then go advanced

– Schema & query optimizations

– Indexing strategy

– Advanced features

• Benchmark every change you make

– Make an effort to build a reliable and flexible benchmarking framework



THANK YOU!

ARNON YOGEV

ARNONY@IL.IBM.COM


