Performance Challenges
In
Software Networking

Stephen Hemminger

@networkplumber
Who am I?

- Principal Architect
 Brocade vRouter (Vyatta)

- Fellow
 Linux Foundation

- Sequent
 Unix SMP networking

- DPDK
 - #3 contributor

- Linux
 - 10+ year contributor
 - Maintainer
 - Bridge
 - iproute
Agenda

- Myths
- Requirements
- Benchmarks
- Reality
Myths

- Software networking can never do:
 - 1Gbit
 - 2008 – Linux, FreeBSD, ...
 - 10Gbit
 - 2013 – DPDK, Netmap, ...
 - 40Gbit
 - 2015 – DPDK, ...
 - 100Gbit
 - 2016?
Hardware vs Software

- Clock rate
- TCAM size
- TCAM miss
- Bus transactions

- Clock rate
- Cache size
- Cache misses per packet
- PCI bus operations
Optimization cycle

Measure

Optimize ← Analyze
SDN Measurement

- Forwarding
- RFC2544
- Scaling
- Imix, BGP, Firewall, ...
- Application
- BGP convergence
- Availability

SDN Workload
Performance
Test Environment
Benchmark vs Reality

- Benchmark
 - random flows
 - 10 or less rules
 - 128GB memory
 - 32 or more CPU

- Reality
 - Bursty flows
 - 1000’s of rules
 - 2GB VM
 - 2-4 CPU
System effects

- Data/Control resource sharing
 - CPU cache
 - Background noise
- Power consumption
- Memory footprint
- Virtualization overhead
- Platform differences
Basics

<table>
<thead>
<tr>
<th></th>
<th>Sandy Bridge</th>
<th>Haswell</th>
<th>Skylake</th>
</tr>
</thead>
<tbody>
<tr>
<td>(bytes/cycle)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>L1 Peak Bandwidth</td>
<td>2x16</td>
<td>2x32 load 1x32 store</td>
<td>2x32 load 1x32 store</td>
</tr>
<tr>
<td>L2 data access (cycles)</td>
<td>12</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>L2 peak Bandwidth</td>
<td>1x32</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>Shared L3 access (cycles)</td>
<td>26-31</td>
<td>34</td>
<td>44</td>
</tr>
<tr>
<td>L3 peak bandwidth</td>
<td>32</td>
<td>-</td>
<td>32</td>
</tr>
<tr>
<td>Data hit in L2 cache</td>
<td>43 – clean hit 60 – modified</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

memory is ~70+ ns away (i.e. 2.0 GHz = 140+ cycles)

Time Budget

- 10Gbit 64 byte packet
 - 67.2ns = 201 cycles @ 3Ghz
- Cache
 - L3 = 8 ns
 - L2 = 4.3
- Atomic operations
 - Lock = 8.25 ns
 - Lock/Unlock = 16.1

Network stack challenges at increasing speeds – LCA 2015
Jesper Dangaard Brouer
Magic Exlir?
Fast vs Slow

- New software
 - Lockless
 - Single function
 - Tight layering
 - Cache aware

- Legacy software
 - Interrupts
 - Shared resources
 - System calls
 - VM exit
Performance Tradeoffs

- Bulk operations
- Lock-less Algorithms
- Tight integration
- Polling
- Caching

→ Latency
→ Update speed
→ Consistency
→ Inflexible
→ CPU utilization
→ Power management
→ Memory utilization
→ Update overhead
Intel Haswell CPU pipeline
Cache flow

Worst case 7+ cache miss per packet!
Cache Ping/Pong

- Cache line shared between cores
 - Statistics
 - Session state
NFV bucket brigade
Packet batching
New developments

- DPDK
 - Multi-architecture
 - NIC support
 - Packet pipeline
 - ACL
 - LPM
 - ...

- Linux
 - Batched Tx
 - Lockless queue disciplines
 - Memory allocator performance
Conclusions

- Software networking is function of:
 - Algorithmics
 - Low level CPU utilization
 - Cache behavior
Questions?
Thank you

Stephen Hemminger
stephen@networkplumber.org
@networkplumber
Next Generation Software Networking

- Openvswitch + DPDK
- Brocade – vRouter
- 6Wind
- FD.io – VPP
- Juniper - Opencontrail
- Huawei - Fusionsphere
Performance Challenges In Software Networking

Stephen Hemminger

@networkplumber
Who am I?

- Principal Architect
 Brocade vRouter (Vyatta)

- Fellow
 Linux Foundation

- Sequent
 Unix SMP networking

- DPDK
 - #3 contributor

- Linux
 - 10+ year contributor
 - Maintainer
 - Bridge
 - iproute
Agenda

- Myths
- Requirements
- Benchmarks
- Reality
Myths

- Software networking can never do:
 - 1Gbit
 - 2008 – Linux, FreeBSD, ...
 - 10Gbit
 - 2013 – DPDK, Netmap, ...
 - 40Gbit
 - 2015 – DPDK, ...
 - 100Gbit
 - 2016?
Hardware vs Software

<table>
<thead>
<tr>
<th>Hardware</th>
<th>Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock rate</td>
<td>Clock rate</td>
</tr>
<tr>
<td>TCAM size</td>
<td>Cache size</td>
</tr>
<tr>
<td>TCAM miss</td>
<td>Cache misses per packet</td>
</tr>
<tr>
<td>Bus transactions</td>
<td>PCI bus operations</td>
</tr>
</tbody>
</table>
Optimization cycle

Measure

Optimize ← Analyze
SDN Measurement

Forwarding
RFC2544

Scaling
Imix, BGP, Firewall, ...

Application
BGP convergence
Availability

SDN Workload
Performance
Test Environment
Benchmark vs Reality

- Benchmark
 - random flows
 - 10 or less rules
 - 128GB memory
 - 32 or more CPU

- Reality
 - Bursty flows
 - 1000’s of rules
 - 2GB VM
 - 2-4 CPU
System effects

- Data/Control resource sharing
 - CPU cache
 - Background noise
- Power consumption
- Memory footprint
- Virtualization overhead
- Platform differences
Basics

<table>
<thead>
<tr>
<th></th>
<th>Sandy Bridge Ivy Bridge</th>
<th>Haswell</th>
<th>Skylake</th>
</tr>
</thead>
<tbody>
<tr>
<td>(bytes/cycle)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>L1 Peak Bandwidth</td>
<td>2x16</td>
<td>2x32 load 1x32 store</td>
<td>2x32 load 1x32 store</td>
</tr>
<tr>
<td>L2 data access (cycles)</td>
<td>12</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>L2 peak Bandwidth</td>
<td>1x32</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>Shared L3 access (cycles)</td>
<td>26-31</td>
<td>34</td>
<td>44</td>
</tr>
<tr>
<td>L3 peak bandwidth</td>
<td>32</td>
<td>-</td>
<td>32</td>
</tr>
<tr>
<td>Data hit in L2 cache</td>
<td>43 – clean hit 60 – modified</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

memory is ~70+ ns away (i.e. 2.0 GHz = 140+ cycles)

Time Budget

- 10Gbit 64 byte packet
 - 67.2ns = 201 cycles @ 3Ghz
- Cache
 - L3 = 8 ns
 - L2 = 4.3
- Atomic operations
 - Lock = 8.25 ns
 - Lock/Unlock = 16.1

Network stack challenges at increasing speeds – LCA 2015
Jesper Dangaard Brouer
Magic Exlir?
Fast vs Slow

- New software
 - Lockless
 - Single function
 - Tight layering
 - Cache aware

- Legacy software
 - Interrupts
 - Shared resources
 - System calls
 - VM exit
Performance Tradeoffs

- Bulk operations
- Lock-less Algorithms
- Tight integration
- Polling
- Caching

➔ Latency
➔ Update speed
 Consistency
➔ Inflexible
➔ CPU utilization
 Power management
➔ Memory utilization
 Update overhead
Intel Haswell CPU pipeline
Cache flow

Worst case 7+ cache miss per packet!
Cache Ping/Pong

- Cache line shared between cores
 - Statistics
 - Session state
NFV bucket brigade
Packet batching
New developments

- DPDK
 - Multi-architecture
 - NIC support
 - Packet pipeline
 - ACL
 - LPM
 - ...

- Linux
 - Batched Tx
 - Lockless queue disciplines
 - Memory allocator performance
Conclusions

- Software networking is a function of:
 - Algorithms
 - Low level CPU utilization
 - Cache behavior
Questions?
Thank you

Stephen Hemminger
stephen@networkplumber.org
@networkplumber
Next Generation Software Networking

- Openvswitch + DPDK
- Brocade – vRouter
- 6Wind
- FD.io – VPP
- Juniper - Opencontrail
- Huawei – Fusionsphere