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What is a secret?

e Any sensitive information
o Passwords
o SSH Keys
o Certificates
o APl Keys

e Secrets should only be visible to authorized users
o Typically only to the owner of the secret



How should we handle secrets?

e Time in transit should be minimized

e Avoid persisting to disk if possible

e Limit possibility of interception



Use case #1: Image pull secrets

e How to download images from a private Docker registry?

o Needs credentials to authenticate

Docker Containerizer
e Registry 1.0: Add .dockercfg as a Taskinfo URI. $HOME is

set to SMESOS_SANDBOX
e Registry 2.0: Add docker.tar.gz as a TaskInfo URI. Archive
should contain .docker/config.json

URIs accessible to all tasks / users
Credentials are downloaded to sandbox => visible on host fs
even after container terminates



Use case #1: Image pull secrets

e How to download images from a private Docker registry?

o Needs credentials to authenticate

Docker Containerizer
e Registry 1.0: Add .dockercfg as a Taskinfo URI. $HOME is

set to SMESOS_SANDBOX
e Registry 2.0: Add docker.tar.gz as a TaskInfo URI. Archive
should contain .docker/config.json

Mesos Containerizer
e Add docker credentials to each agent via --docker_config

flag

URIs accessible to all tasks / users
Credentials are downloaded to sandbox => visible on host fs

Credentials need to be configured by operators and not
application developers
Per task credentials are not supported



Use case #2: Application secrets

e An application (Mesos task) needs access to credentials to talk to other
services

Pass secrets via "data’ or ‘labels” in TaskInfo e Labels exposed in APl endpoints
e Tasklinfo is visible on network without SSL
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No support for authenticated URIs
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Use case #2: Application secrets

e An application (Mesos task) needs access to credentials to talk to other

services
Pass secrets via "data’ or ‘labels” in TaskInfo e Labels exposed in APl endpoints
e Tasklinfo is visible on network without SSL
Fetch secrets from URIs e No support for authenticated URIs
e Downloaded to sandbox => visible on host fs
Out of band mechanisms (hooks, isolator modules) e Complicated

e Not reusable



Use case #3: Executor authentication

e Executors need to authenticate with agents with unique credentials
o Credentials need to be securely passed to the executor



Use case #3: Executor authentication

e Executors need to authenticate with agents with unique credentials
o Credentials need to be securely passed to the executor

e There is historically no native support for executor authentication
o Neitherin vO or v1 APIs
o Tasks can spoof as executors!



Goals

e Add first class support for Secrets in Mesos

e Integrate with 3rd party secret stores (e.g., HashiCorp Vault)

e Support environment based and file based secrets



Solution overview

e Secret

e Secret Resolver

e Secret Isolators
o “environment_secret’
o ‘volume/secret’



Secret Protobuf

message Secret
{
enum Type {
UNKNOWN = 0;
REFERENCE = 1;
VALUE = 2;

// Can be used by modules to refer to a secret stored in a secure back-end.
message Reference
{

required string name = 1;

optional string key = 2;

// Used to pass the value of a secret.
message Value
{

required bytes data = 1;

optional Type type = 1;
// Only one of “reference’ and ‘value' must be set.

optional Reference reference = 2;
optional Value value = 3;



Secret Resolver Interface

class SecretResolver

1

public:

// Factory method used to create a SecretResolver instance. If the

// “name’ parameter is provided, the module is instantiated

// using the “ModuleManager®. Otherwise, a "default" secret resolver

// instance (defined in “src/secret/resolver.hpp’) is returned.

static Try<SecretResolverx> create(const Option<std::string>& name = None());

virtual ~SecretResolver() {}

// Validates the given secret, resolves the secret reference (by potentially
// querying a secret backend store), and returns the data associated with
// the secret.
virtual process::Future<Secret::Value> resolve(
const Secret& secret) const = 0;

protected:

¥

SecretResolver() {}



Architecture
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Image pull secrets

message Image {

enum Type {
APPC = 1;
DOCKER = 2;
}

message Docker {
required string name = 1;

// Docker config containing credentails to authenticate with
// docker registry. The secret is expected to be a docker

// config file in JSON format with UTF-8 character encoding.
optional Secret config = 3;

required Type type = 1;

// Only one of the following image messages should be set to match
// the type.

optional Appc appc = 2;

optional Docker docker = 3;



Image pull secrets workflow

TaSklnfO Secret
Resolver
Image::Docker —
Provisioner

-- Docker::config : foo
V &
k Agent

Container

Secrets not visible to container!




Environment based secrets

message Environment {
message Variable {
required string name = 1;

enum Type {
UNKNOWN = ©;
VALUE = 1;
SECRET = 2;

optional Type type = 3 [default = VALUE];
// Only one of “value® and ‘secret’ must be set.

optional string value = 2;
optional Secret secret = 4;

repeated Variable variables = 1;



Environment based secrets workflow

Secret Store

TaskInfo
[ Secret
Environment::Variable Resolver
-- name : foo T . .
-- secret::Reference::name : bar environment_secret isolator
Agent

= /

Environment
foo : bar_value

Task




File based secrets

message Volume {

// Path pointing to a directory or file in the container.
required string container_path = 1;

// Describes where a volume originates from.
message Source {
enum Type {
UNKNOWN = 0;
DOCKER_VOLUME = 1;
SANDBOX_PATH = 2;
SECRET = 3;

optional Type type = 1;
// At most one of the following should be set.
optional DockerVolume docker_volume = 2;

optional SandboxPath sandbox_path = 3;
optional Secret secret = 4;

optional Source source = 5;



File based secrets workflow

Secret Store

TasklInfo

/ [ Secret
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-- container_path : /secret \
volume/secret isolator

-- source::secret::Reference::name : bar
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Deleted after container termination



Feature Status

e Secrets support included in Mesos 1.3.0
o Mesos Containerizer support for Image pull secrets
o Environment based secrets
o File based secrets

e Secret Resolver
o Interface is modularized
o Value' based resolver included in Mesos repo
o Reference’ based resolver can be implemented as a module






Future Work

e Image pull secrets
o  Support for Docker Containerizer
o AppC / OCI support for Mesos Containerizer

e URI fetching
o Use secrets to fetch URIs that require authentication
o Fetch https URIs with TLS/SSL certificates
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Thanks

Design docs: Image pull secrets, File based secrets, Executor authentication



https://docs.google.com/document/d/1kMXeJEuw4_adwyxqEjoMAdxRNzYHWrT_-eGd1uQLQEg/edit?ts=58fa80ad
https://docs.google.com/document/d/18raiiUfxTh-JBvjd6RyHe_TOScY87G_bMi5zBzMZmpc/edit#heading=h.scyekghgomu6
https://docs.google.com/document/d/12GMJ7VGGMKsMz4JZK-2fblAJhvYlJhVUV8aF9fNh8qQ/edit

