Secrets Management in
Mesos

Vinod Kone (vinodkone@apache.org)

MesosCon EU 2017

About me

e Apache Mesos PMC and Committer

e Engineering Manager for Mesos team @ Mesosphere

e Previously Tech Lead for Mesos team @ Twitter

e PhD in Computer Science @ University of California Santa Barbara

What is a secret?

e Any sensitive information
o Passwords
o SSH Keys
o Certificates
o APl Keys

e Secrets should only be visible to authorized users
o Typically only to the owner of the secret

How should we handle secrets?

e Time in transit should be minimized

e Avoid persisting to disk if possible

e Limit possibility of interception

Use case #1: Image pull secrets

e How to download images from a private Docker registry?

o Needs credentials to authenticate

Docker Containerizer
e Registry 1.0: Add .dockercfg as a Taskinfo URI. $HOME is

set to SMESOS_SANDBOX
e Registry 2.0: Add docker.tar.gz as a TaskInfo URI. Archive
should contain .docker/config.json

URIs accessible to all tasks / users
Credentials are downloaded to sandbox => visible on host fs
even after container terminates

Use case #1: Image pull secrets

e How to download images from a private Docker registry?

o Needs credentials to authenticate

Docker Containerizer
e Registry 1.0: Add .dockercfg as a Taskinfo URI. $HOME is

set to SMESOS_SANDBOX
e Registry 2.0: Add docker.tar.gz as a TaskInfo URI. Archive
should contain .docker/config.json

Mesos Containerizer
e Add docker credentials to each agent via --docker_config

flag

URIs accessible to all tasks / users
Credentials are downloaded to sandbox => visible on host fs

Credentials need to be configured by operators and not
application developers
Per task credentials are not supported

Use case #2: Application secrets

e An application (Mesos task) needs access to credentials to talk to other
services

Pass secrets via "data’ or ‘labels” in TaskInfo e Labels exposed in APl endpoints
e Tasklinfo is visible on network without SSL

Use case #2: Application secrets

e An application (Mesos task) needs access to credentials to talk to other

services

Pass secrets via "data’ or “labels” in TaskInfo

Fetch secrets from URIs

Labels exposed in API endpoints
TaskInfo is visible on network without SSL

No support for authenticated URIs
Downloaded to sandbox => visible on host fs even after
container termination

Use case #2: Application secrets

e An application (Mesos task) needs access to credentials to talk to other

services
Pass secrets via "data’ or ‘labels” in TaskInfo e Labels exposed in APl endpoints
e Tasklinfo is visible on network without SSL
Fetch secrets from URIs e No support for authenticated URIs
e Downloaded to sandbox => visible on host fs
Out of band mechanisms (hooks, isolator modules) e Complicated

e Not reusable

Use case #3: Executor authentication

e Executors need to authenticate with agents with unique credentials
o Credentials need to be securely passed to the executor

Use case #3: Executor authentication

e Executors need to authenticate with agents with unique credentials
o Credentials need to be securely passed to the executor

e There is historically no native support for executor authentication
o Neitherin vO or v1 APIs
o Tasks can spoof as executors!

Goals

e Add first class support for Secrets in Mesos

e Integrate with 3rd party secret stores (e.g., HashiCorp Vault)

e Support environment based and file based secrets

Solution overview

e Secret

e Secret Resolver

e Secret Isolators
o “environment_secret’
o ‘volume/secret’

Secret Protobuf

message Secret
{
enum Type {
UNKNOWN = 0;
REFERENCE = 1;
VALUE = 2;

// Can be used by modules to refer to a secret stored in a secure back-end.
message Reference
{

required string name = 1;

optional string key = 2;

// Used to pass the value of a secret.
message Value
{

required bytes data = 1;

optional Type type = 1;
// Only one of “reference’ and ‘value' must be set.

optional Reference reference = 2;
optional Value value = 3;

Secret Resolver Interface

class SecretResolver

1

public:

// Factory method used to create a SecretResolver instance. If the

// “name’ parameter is provided, the module is instantiated

// using the “ModuleManager®. Otherwise, a "default" secret resolver

// instance (defined in “src/secret/resolver.hpp’) is returned.

static Try<SecretResolverx> create(const Option<std::string>& name = None());

virtual ~SecretResolver() {}

// Validates the given secret, resolves the secret reference (by potentially
// querying a secret backend store), and returns the data associated with
// the secret.
virtual process::Future<Secret::Value> resolve(
const Secret& secret) const = 0;

protected:

¥

SecretResolver() {}

Architecture

[Isolator }

Secret \

Secret::Value

[Secret Resolver }

Secret Secret::Value

[Provisioner }

Image pull secrets

message Image {

enum Type {
APPC = 1;
DOCKER = 2;
}

message Docker {
required string name = 1;

// Docker config containing credentails to authenticate with
// docker registry. The secret is expected to be a docker

// config file in JSON format with UTF-8 character encoding.
optional Secret config = 3;

required Type type = 1;

// Only one of the following image messages should be set to match
// the type.

optional Appc appc = 2;

optional Docker docker = 3;

Image pull secrets workflow

TaSklnfO Secret
Resolver
Image::Docker —
Provisioner

-- Docker::config : foo
V &
k Agent

Container

Secrets not visible to container!

Environment based secrets

message Environment {
message Variable {
required string name = 1;

enum Type {
UNKNOWN = ©;
VALUE = 1;
SECRET = 2;

optional Type type = 3 [default = VALUE];
// Only one of “value® and ‘secret’ must be set.

optional string value = 2;
optional Secret secret = 4;

repeated Variable variables = 1;

Environment based secrets workflow

Secret Store

TaskInfo
[Secret
Environment::Variable Resolver
-- name : foo T . .
-- secret::Reference::name : bar environment_secret isolator
Agent

= /

Environment
foo : bar_value

Task

File based secrets

message Volume {

// Path pointing to a directory or file in the container.
required string container_path = 1;

// Describes where a volume originates from.
message Source {
enum Type {
UNKNOWN = 0;
DOCKER_VOLUME = 1;
SANDBOX_PATH = 2;
SECRET = 3;

optional Type type = 1;
// At most one of the following should be set.
optional DockerVolume docker_volume = 2;

optional SandboxPath sandbox_path = 3;
optional Secret secret = 4;

optional Source source = 5;

File based secrets workflow

Secret Store

TasklInfo

/ [Secret

Volume Resolver

-- container_path : /secret \
volume/secret isolator

-- source::secret::Reference::name : bar

4

Agent

- /

Container h

bar oo

tmpfs volume "
— _ /secret J

Deleted after container termination

Feature Status

e Secrets support included in Mesos 1.3.0
o Mesos Containerizer support for Image pull secrets
o Environment based secrets
o File based secrets

e Secret Resolver
o Interface is modularized
o Value' based resolver included in Mesos repo
o Reference’ based resolver can be implemented as a module

Future Work

e Image pull secrets
o Support for Docker Containerizer
o AppC / OCI support for Mesos Containerizer

e URI fetching
o Use secrets to fetch URIs that require authentication
o Fetch https URIs with TLS/SSL certificates

Acknowledgements

e Gilbert Song

e Kapil Arya

e JieYu

e Chun-Hung Hsiao

Thanks

Design docs: Image pull secrets, File based secrets, Executor authentication

https://docs.google.com/document/d/1kMXeJEuw4_adwyxqEjoMAdxRNzYHWrT_-eGd1uQLQEg/edit?ts=58fa80ad
https://docs.google.com/document/d/18raiiUfxTh-JBvjd6RyHe_TOScY87G_bMi5zBzMZmpc/edit#heading=h.scyekghgomu6
https://docs.google.com/document/d/12GMJ7VGGMKsMz4JZK-2fblAJhvYlJhVUV8aF9fNh8qQ/edit

