
Sagar Patwardhan
sagarp@yelp.com

Seagull: A distributed, fault tolerant,
concurrent task runner

Yelp’s Mission
Connecting people with great

local businesses.

Yelp scale

What is Seagull? Why did we build it?

Deep dive into Seagull

Fleetmiser: Yelp’s in-house cluster autoscaler

Challenges faced and lessons learned

Future of Seagull

Outline

Yelp needs to run ~100,000 tests for its applications.

Tests take ~2 days to run if executed serially.

North of 500 developers.

Directly impacts developer productivity.

Testing at Yelp

Seagull

~350 seagull runs every day. Average run time ~10-15 mins.

~2.5 million ephemeral containers every day.

Cluster scales from ~70 instances to ~450 instances.

All spot instances.

~25 million tests executed every day.

Current seagull scale

Run Dockerized integration, acceptance tests

Locust: Yelp’s load testing framework.

Photo classification: Classify tens of millions of photos in
less than a day.

Applications of seagull

Deep dive into seagull

Seagull workflow for testing

Artifact
builder

Written in python; Uses libmesos

One scheduler per test suite per run

~40-50 schedulers running simultaneously at peak

Customizable concurrency

Fault tolerant

Seagull Mesos scheduler

Aim: Optimize for seagull bundle setup time.

Affinity for already used agents.

Use as many resources in an offer as possible.

This also simplifies the scale down.

Placement strategies

Unsuccessful tasks/bundles

Unsuccessful bundles are
split into 2 equal bundles &
rescheduled.

Custom mesos executor written in python.

Uses Mesos containerizer and cgroups isolator.

Does setup and teardown of bundles.

Reports resource utilization stats.

Uploads log files to s3, sends metrics to ElasticSearch and
SignalFx.

Seagull executor

Clusterwide resources: selenium and database connections

Resources are not tied to specific agents.

ZooKeeper ephemeral znodes to keep track of how many
connections are being used.

ZooKeeper locks for atomic access.

Resources are freed up when executors go away.

Clusterwide resources

Monitoring & Alerting

Real time monitoring & alerting using
SignalFx

Red bundles == Failed bundles
Blue bundles == Killed bundles
Yellow bundles == Lost bundles

stdout & stderr of all the executors is stored in Splunk which
allows us to see failure trends across multiple seagull runs.

Log aggregation in splunk

Efficient bundling of tasks for Seagull

Test timings are stored in ElasticSearch.

P90 of test timings for last one week are stored in
DynamoDB every day.

The list is sorted in ascending order of test timings.

Tests are packed into bins of 10 minutes.

Greedy Algorithm

Handle test dependencies. Some tests cannot be run
together. Some tests need to run together.

We use the PuLP LP solver.

Goals:
1. Minimize the number of bundles created.
2. A test is present in only one bundle.
3. A single bundle’s work is less than 10 mins.

Linear Programming algorithm

Autoscaling the cluster

$
$
$
$

Savings!!!

Weekend Weekend

Weekdays

$ $
$

$
$$

$
$

$
$

$$ $
$

$
$

$

$$ $ $

$ $
$

$

$

$
$

$

$ $ $

$

$

$

Daily usage trends

Euro code
push

US office hours

Lunch time

FleerMiser: Yelp’s in-house autoscaler

FleetMiser

Data stores

Monitoring

CPU utilization

Seagull runs in flight

Auto scaling strategies

Our tasks are CPU bound

Autoscaler tracks the CPU utilization in the cluster, and
makes decisions based on that.

If the cluster utilization > 65% for 15 minutes, then we scale
up.

If the cluster utilization is < 35% for 30 mins, then we scale
down.

Based on CPU utilization

Whenever a new Seagull run is submitted, autoscaler gets
notified about it.

Autoscaler anticipates the resources required for seagull
runs triggered and adds resources to the cluster.

Based on the number of Seagull run
submitted

AWS Spotfleet does not allow us to specify which instances
to terminate.

Autoscaler finds and terminates the idle instances, and
readjusts the Spotfleet capacity.

Scaling down is difficult!

80% in cost savings in compute cost
S

ea
gu

ll
In

fra
st

ru
ct

ur
e

C
os

t

Timeline (May 2015-April 2016)

55% reduction in costs after initial transition to
spot instances

Additional 60% savings after
transition to
spot+autoscaling complete

Key challenges and solutions

Artifact and docker image download takes a long time
causing seagull runs to be delayed.

Other applications in the VPC are affected by this.

Bandwidth issues while talking to s3

Fast and secure access to S3 without any limitations on
bandwidth.

Traffic does not leave Amazon network.

Caveat: It can be only enabled for the S3 buckets in the
same AWS region.

Use VPC S3 endpoints

Setup: Multiple Docker registries on a single host behind an
nginx proxy.

It failed to cope up with requests being made.

Solution: Run Docker registries on every agent. Use
/etc/hosts for address resolution.

Central Docker registries get
overwhelmed

AWS gives a warning 2 mins before reclaiming spot
instances.

Solution:
A cron job terminates all the running executors upon
receiving a termination notice.

mesos-agent process is killed to prevent new tasks from
getting scheduled.

Spot instances

Fluctuations in spot prices of instances in certain markets
can have an adverse effect on your application.

Getting the bid price right is hard. Trade-off between
availability and cost savings.

Solutions:
Make your application fault tolerant.

Diversify! Add more spot markets.

Spot markets are volatile

Docker daemon gets locked up and does not respond to
requests.

Deadlock in Docker daemon.

Docker daemon randomly fails to resolve DNS.

AUFS causes soft CPU lockup.

Issues with Docker daemon

Cannot kill containers because docker daemon gets busy
which leads to orphaned docker containers.

Containers take up resources that are not accounted for in
Mesos.

Boxes eventually OOM.

Orphaned Docker containers

Proxy for Docker daemon.

Written in go.

Forwards all the signals to its children.

Cleans up all the containers after the child process exits.

docker-reaper

Docker-reaperExecutor

Creates a new unix socket
and sets $DOCKER_HOST
to that socket.

 Child
 process

Fork-exec

Create container API
call

Create container API
call

Remove
Container

Container id

Stores the
container id

Designed to be used by a single operator.

Need external locking mechanism to make it work for
multiple operators.

Mesos maintenance mode

Future of Seagull

Use oversubscription.

Use task_processing library to replace the core-component
of the scheduler.

Use CSI plugin to implement clusterwide resources.

Make it easier for other services/applications to use seagull
for parallelizing tasks.

Scheduler improvements

Containerize everything!!!

Use Docker runtime in Mesos containerizer and eliminate
the need to talk to Docker daemon.

Experiment with nested containers and pods.

Executor improvements

More advanced autoscaling for better resource utilization

Use multiple spot fleets. We may save more money?

Use more instance types in the cluster.

Autoscaler improvements

● Offices in London or Hamburg, remote workers also welcome!

● Engineers or managers with dist-sys experience:
○ Strong knowledge of systems and application design.
○ Ability to work closely with information retrieval/machine learning

experts on big-data problems.
○ Strong understanding of operating systems, file systems and

networking.
○ Fluency in Python, C, C++, Java, or a similar language.
○ Technologies we use: Mesos, Marathon, Docker, ZooKeeper, Kafka,

Cassandra, Flink, Spark, Elasticsearch

Apply at https://www.yelp.com/careers or come say hi!

We are hiring in Europe!

https://www.yelp.com/careers

@YelpEngineering

fb.com/YelpEngineers

engineeringblog.yelp.com

github.com/yelp

