
Scio
A Scala API for
Google Cloud Dataflow &
Apache Beam

Robert Gruener
@MrRobbie_G

About Us
● 100M+ active users, 40M+ paying

● 30M+ songs, 20K new per day

● 2B+ playlists

● 60+ markets

● 2500+ node Hadoop cluster

● 50TB logs per day

● 10K+ jobs per day

Who am I?
● Spotify NYC since 2013

● Music recommendations - Discover

Weekly, Release Radar

● Data infrastructure

Origin Story

● Python Luigi, circa 2011

● Scalding, Spark and Storm, circa 2013

● ML, recommendation, analytics

● 100+ Scala users, 500+ unique jobs

Moving to
Google
Cloud
Early 2015 - Dataflow Scala hack project

What is
Dataflow/Beam?

The Evolution of Apache Beam

MapReduce

BigTable DremelColossus

FlumeMegastoreSpanner

PubSub

Millwheel
Apache
Beam

Google Cloud
Dataflow

What is Apache Beam?

1. The Beam Programming Model

2. SDKs for writing Beam pipelines -- starting with Java

3. Runners for existing distributed processing backends

○ Apache Flink (thanks to data Artisans)

○ Apache Spark (thanks to Cloudera and PayPal)

○ Google Cloud Dataflow (fully managed service)

○ Local runner for testing

9

The Beam Model: Asking the Right Questions

What results are calculated?

Where in event time are results calculated?

When in processing time are results materialized?

How do refinements of results relate?

10

Customizing What Where When How

3
Streaming

4
Streaming

 + Accumulation

1
Classic
Batch

2
Windowed

Batch

11

The Apache Beam Vision

1. End users: who want to write
pipelines in a language that’s familiar.

2. SDK writers: who want to make Beam
concepts available in new languages.

3. Runner writers: who have a
distributed processing environment
and want to support Beam pipelines

Beam Model: Fn Runners

Apache
Flink

Apache
Spark

Beam Model: Pipeline Construction

Other
LanguagesBeam Java

Beam
Python

Execution Execution

Cloud
Dataflow

Execution

Data model

Spark

● RDD for batch, DStream for streaming

● Explicit caching semantics

● Two sets of APIs

Dataflow / Beam

● PCollection for batch and streaming

● Windowed and timestamped values

● One unified API

Execution

Spark

● One driver, n executors

● Dynamic execution from driver

● Transforms and actions

Dataflow / Beam

● No master

● Static execution planning

● Transforms only, no actions

Why
Dataflow/Beam?

Scalding on Google Cloud

Pros

● Community - Twitter, Stripe, Etsy, eBay

● Hadoop stable and proven

Cons

● Cluster ops

● Multi-tenancy - resource contention and utilization

● No streaming (Summingbird?)

● Integration with GCP - BigQuery, Bigtable, Datastore, Pubsub

Spark on Google Cloud

Pros

● Batch, streaming, interactive, SQL and MLLib

● Scala, Java, Python and R

● Zeppelin, spark-notebook

Cons

● Cluster lifecycle management

● Hard to tune and scale

● Integration with GCP - BigQuery, Bigtable, Datastore, Pubsub

Dataflow

● Hosted, fully managed, no ops

● GCP ecosystem - BigQuery, Bigtable, Datastore, Pubsub

● Unified batch and streaming model

Scala

● High level DSL

● Functional programming natural fit for data

● Numerical libraries - Breeze, Algebird

Why Dataflow with Scala

Cloud
Storage Pub/Sub Datastore BigtableBigQuery

Batch Streaming Interactive REPL

Scio Scala API

Dataflow Java SDK Scala Libraries

Extra features

Scio
Ecclesiastical Latin IPA: /ˈʃi.o/, [ˈʃiː.o], [ˈʃi.i ̯o]

Verb: I can, know, understand, have knowledge.

github.com/spotify/scio
Apache Licence 2.0

WordCount

val sc = ScioContext()
sc.textFile("shakespeare.txt")
 .flatMap { _
 .split("[^a-zA-Z']+")
 .filter(_.nonEmpty)
 }
 .countByValue
 .saveAsTextFile("wordcount.txt")
sc.close()

PageRank

def pageRank(in: SCollection[(String, String)]) = {
 val links = in.groupByKey()
 var ranks = links.mapValues(_ => 1.0)
 for (i <- 1 to 10) {
 val contribs = links.join(ranks).values
 .flatMap { case (urls, rank) =>
 val size = urls.size
 urls.map((_, rank / size))
 }
 ranks = contribs.sumByKey.mapValues((1 - 0.85) + 0.85 * _)
 }
 ranks
}

Why Scio?

Type safe BigQuery

Macro generated case classes, schemas and converters

@BigQuery.fromQuery("SELECT id, name FROM [users] WHERE ...")
class User // look mom no code!
sc.typedBigQuery[User]().map(u => (u.id, u.name))

@BigQuery.toTable
case class Score(id: String, score: Double)
data.map(kv => Score(kv._1, kv._2)).saveAsTypedBigQuery("table")

REPL

$ scio-repl
Welcome to

 ________________(_)_____
 __ ___/ ___/_ /_ __ \
 _(__)/ /__ _ / / /_/ /
 /____/ ___/ /_/ ____/ version 0.2.5

Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_11)

Type in expressions to have them evaluated.
Type :help for more information.

Using 'scio-test' as your BigQuery project.
BigQuery client available as 'bq'
Scio context available as 'sc'

scio> _

Available in github.com/spotify/homebrew-public

Future based orchestration

// Job 1
val f: Future[Tap[String]] = data1.saveAsTextFile("output")
sc1.close() // submit job

val t: Tap[String] = Await.result(f)
t.value.foreach(println) // Iterator[String]

// Job 2
val sc2 = ScioContext(options)
val data2: SCollection[String] = t.open(sc2)

DistCache

val sw = sc.distCache("gs://bucket/stopwords.txt") { f =>
 Source.fromFile(f).getLines().toSet
}
sc.textFile("gs://bucket/shakespeare.txt")
 .flatMap { _
 .split("[^a-zA-Z']+")
 .filter(w => w.nonEmpty && !sw().contains(w))
 }
 .countByValue
 .saveAsTextFile("wordcount.txt")

● DAG visualization & source code mapping

● BigQuery caching, legacy & SQL 2011 support

● HDFS Source/Sink, Protobuf & object file I/O

● Job metrics, e.g. accumulators

○ Programmatic access

○ Persist to file

● Bigtable

○ Multi-table write

○ Cluster scaling for bulk I/O

Other goodies

Demo Time!

Adoption

● At Spotify

○ 20+ teams, 80+ users, 70+ production pipelines

○ Most of them new to Scala and Scio

● Open source model

○ Discussion on Slack, mailing list

○ Issue tracking on public Github

○ Community driven - type safe BigQuery, Bigtable, Datastore, Protobuf

Release Radar
● 50 n1-standard-1 workers

● 1 core 3.75GB RAM

● 130GB in - Avro & Bigtable

● 130GB out x 2 - Bigtable in US+EU

● 110M Bigtable mutations

● 120 LOC

Fan Insights

● Listener stats

[artist|track] ×

[context|geography|demography] ×

[day|week|month]

● BigQuery, GCS, Datastore

● TBs daily

Master Metadata

● n1-standard-1 workers

● 1 core 3.75GB RAM

● Autoscaling 2-35 workers

● 26 Avro sources - artist, album, track, disc, cover art, ...

● 120GB out, 70M records

● 200 LOC vs original Java 600 LOC

And we broke Google

BigDiffy

● Pairwise field-level statistical diff

● Diff 2 SCollection[T] given keyFn: T => String

● T: Avro, BigQuery, Protobuf

● Field level Δ - numeric, string, vector

● Δ statistics - min, max, μ, σ, etc.

● Non-deterministic fields

○ ignore field

○ treat "repeated" field as unordered list
Part of github.com/spotify/ratatool

Dataset Diff

● Diff stats

○ Global: # of SAME, DIFF, MISSING LHS/RHS

○ Key: key → SAME, DIFF, MISSING LHS/RHS

○ Field: field → min, max, μ, σ, etc.

● Use cases

○ Validating pipeline migration

○ Sanity checking ML models

Pairwise field-level deltas

val lKeyed = lhs.map(t => (keyFn(t) -> ("l", t)))
val rKeyed = rhs.map(t => (keyFn(t) -> ("r", t)))
val deltas = (lKeyed ++ rKeyed).groupByKey.map { case (k, vs) =>
 val m = vs.toMap
 if (m.size == 2) {
 val ds = diffy(m("l"), m("r")) // Seq[Delta]
 val dt = if (ds.isEmpty) SAME else DIFFERENT
 (k, (ds, dt))
 } else {
 val dt = if (m("l")) MISSING_RHS else MISSING_LHS
 (k, (Nil, dt))
 }
}

Summing deltas

import com.twitter.algebird._

// convert deltas to map of (field → summable stats)
def deltasToMap(ds: Seq[Delta], dt: DeltaType)
: Map[String, (Long, Option[(DeltaType, Min[Double], Max[Double], Moments)])] = {
 // ...
}

deltas
 .map { case (_, (ds, dt)) => deltasToMap(ds, dt) }
 .sum // Semigroup!

Other uses
● AB testing

○ Statistical analysis with bootstrap

and DimSum

○ BigQuery, Datastore, TBs in/out

● Monetization

○ Ads targeting

○ User conversion analysis

○ BigQuery, TBs in/out

● User understanding

○ Diversity

○ Session analysis

○ Behavior analysis

● Home page ranking

● Audio fingerprint analysis

Implementation

Serialization

● Data ser/de

○ Scalding, Spark and Storm uses Kryo and Chill

○ Dataflow/Beam requires explicit Coder[T]

Sometimes inferable via Guava TypeToken

○ ClassTag to the rescue, fallback to Kryo/Chill

● Lambda ser/de

○ ClosureCleaner

○ Serializable and @transient lazy val

REPL

● Spark REPL transports lambda via HTTP

● Dataflow requires job jar for execution (no master)

● Custom class loader and ILoop

● Interpreted classes → job jar → job submission

● SCollection[T]#closeAndCollect(): Iterator[T]
to mimic Spark actions

Macros and IntelliJ IDEA

● IntelliJ IDEA does not see macro expanded classes

https://youtrack.jetbrains.com/issue/SCL-8834

● @BigQueryType.{fromTable, fromQuery}

class MyRecord

● Scio IDEA plugin

https://github.com/spotify/scio-idea-plugin

MAKE INTELLIJ
INTELLIGENT AGAIN

Scio in Apache Zeppelin

Local Zeppelin server, remote managed Dataflow cluster, NO OPS

What's Next?

● Better streaming support [#163]

● Working branch on Beam 0.2.0-incubating

● Support other runners

● Donate to Beam as Scala DSL [BEAM-302]

The End
Thank You

Robert Gruener
@MrRobbie_G

