

SWUpdate

Updating an Embedded
System

About me

● Me:
– Software Engineer at DENX, Gmbh

– U-Boot Custodian for NXP's i.MX

– Focus on Linux embedded

– Author of FOSS SWUpdate

Do we update ?

Local Update

Push Software

Pull Software

Deployment systems

Rescue system

Requirement of updater ES
● Power-off safe
● Must not brick the device
● Atomic: must not apply half an

update
● Secure

– Signing images and verification of
images

– Prevent that device can be hijacked

Requirements - 2
● Remote unattended update
● Update of bootloader, kernel, filesystem
● Failsafe, Apply / rollback system updates
● It should take care of most important law

As much as possible !

Components to be update

● Bootloader
● Kernel
● Root filesystem
● System Application
● FPGAs
● Microcontroller, etc.
● Configuration

Single copy -1

Bootloader
SWUpdate

Rescue
Firmware

Config
Data, etc.

Flashing New version firmware

Double-copy

Bootloader Standby copy
Config

Data, etc.
Running copy

SWUpdate Flashing..
New software

SWUpdateStandby copy
Running copy

SWUpdate

Combine methods

U-Boot

Env

Kernel for
 SWUpdate

Ramdisk
SWUpdate

Copy-A

Copy-B

} 8MB

SPI NOR Flash

NAND / eMMC / SD

~4MB

SWUpdate
● Project started end 2014
● GPLv2, client library LGPLv2
● Often delivered together with BSP
● In the meantime:

– ~40 developers sent contribution

– Release cycle 3 months

– One of Yocto updater:
●

– Used by many devices in field

https://wiki.yoctoproject.org/wiki/System_Update

Deeds, not words !

Features - Basis

● Atomic update
● Embedded media

– eMMC, SD

– Raw NAND, UBI,NOR,SPI-NOR

● Single image (SWU) for multiple devices
● Power-Off safe
● Hardware-Software check

Deeds, not words !

Features - Interfaces

● Local Interface
● Remote interface / OTA

– integrated web server (PUSH mode)

– Backend: integrated REST client connector to
hawkBit (PULL Mode)

– remote server download (PULL Mode)

– Custom interface (client library, LGPL)

Deeds, not words !

Features - Extended
● Integrated LUA interpreter

– modular with plugins in LUA

● Embedded Buildsystems
– Integrated in Yocto with meta-swupdate

– Officially supported by Buildroot

● Support for bootloader
– U-Boot

– GRUB

● Small footprint

Deeds, not words !

Features - next
● Fallback with bootloaders
● Image updater and file

updater
● Interface to report progress
● Uses Kbuild for configuration
● Streaming without temporary

copies

Deeds, not words !

Features - Security
● HTTPS protocol
● Use Certificates for server

verification
● Signed Images
● Encrypted artifacts
● Privilege separation

● Installer usually runs as root
● Network processes runs on

different user

Deeds, not words !

Structure SWU image

● CPIO format for simplicity
● sw-description describes update
● Images data / artifacts

CPIO Header

sw-description

Image 1

Image 2

Image 3

Image i

Image n

sw-description

● Describe how to install a release
● Different parser

– libconfig (default)

– JSON

– Custom (LUA)
● Example: XML parser using LUAExpat

SWUpdate’s architecture

Custom Process

Custom
 Parser
(LUA)

UBI

MTD

RAW

BootEnv

Custom

SWUpdate IPC

Handler manager

Notifier

JSON
Parser

Remote

Archive

Progress

Tracer / LOG

Local WebServerSuricatta Downloader

Installer Thread

LIBCONFIG
Parser

(default)

LUA Interpreter

Custom Process

Custom Process

Utilities

SWUpdate

Config

Sw-description : structure

Software = {
Version = “1.0.0”;

}

myhw = {
hardware-compatibility : [“1.0”, “1.1”, “1.3”];

 }

images : (
{

filename = “rootfs.ext4.gz”;
device = “/dev/mmcblk0p1”;
type = “raw”;

});

files : ({
filename = “archive.tgz”;
type = “archive”;
Path = “/usr/share/myapp”;

});

Header

Board specific

Section: images

Section: scriptsscripts : (
{

filename = “postinstall.sh”;
type = “shellscript”;

});

Section: files

One image for multiple devices

Software = {
Version = “1.0.0”;

}

hmi = {
hardware-compatibility : [“1.0”, “1.1”, “1.3”];

 }

images : (
{

……...
});

Header

Target : HMI

Target: TypeA-1
TypeA-1 = {

Hardware-compatibility : [“2.1”, “2.2”, “3.3”];

 }

images : (
{

……...
});

Collections
software =
{

version = "0.1.0";
myhw = {

hardware-compatibility: ["1.0"];
stable : {

copy1 : {
images: (

{
filename = "core-image-full-cmdline-twister.ubifs";
type = "ubivol";
volume = "rootfs1";
sha256 = "@core-image-full-cmdline-twister.ubifs";

},
{

filename = "uImage-twister.bin";
type = "flash";
device = "/dev/mtd10";
sha256 = "@uImage-twister.bin";

});
scripts: (

{
filename = "test.lua";
type = "lua";
sha256 = "@test.lua";

});
 uboot: (
 {
 name = "nandroot";
 value = "rootfs1";
 },
 {
 name = "kernelpart";
 value = "kernel1";
 }

);
};

Collections
copy2 : {

images: (
{

filename = "core-image-full-cmdline-twister.ubifs";
type = "ubivol";
volume = "rootfs2"
installed-directly = true;
sha256 = "@core-image-full-cmdline-twister.ubifs";

},
{

filename = "uImage-twister.bin";
type = "flash";
device = "/dev/mtd11";
sha256 = "@uImage-twister.bin";

}
);
scripts: (

{
filename = "test.lua";
type = "lua";
sha256 = "@test.lua";

}
);

 uboot: (
 {
 name = "nandroot";
 value = "rootfs2";
 },
 {
 name = "kernelpart";
 value = "kernel2";
 }

);
};

};

Handlers
● flash devices in raw mode (both NOR and NAND)
● UBI volumes
● Archives (tarballs,..)
● raw devices, such as a SD Card partition
● U-Boot environment
● LUA scripts
● Shell scripts
● Remote handler

But you can also create your own ...

Embedded Script

● Executive part of sw-description
● Description changed at runtime
● Use cases for Embedded Script:

– Check if an update is allowed

– Set Partitions

– Pre-install script

https://github.com/sbabic/meta-swupdate-boards/blob/master/recipes-extended/images/update-image-embscript/raspberrypi3/sw-description
https://github.com/sbabic/meta-swupdate-boards/blob/master/recipes-extended/images/update-image-embscript/raspberrypi3/sw-description

Rollback

● Together with U-Boot “bootcounter”
● Increment count in bootloader
● Reset after successful update / boot
● If reboots and count > threshold

– Bootloader knows update / boot failed

– Bootloader loads alternate boot

Security: Signed images

Yocto BuildSystem

Meta-swupdate

Signed Image

Update Agent
(SWUpdate)

K

76
54

32

K

76
54

32

Authentication Key

K

76
54

32

K

76
54

32

Public Key

SWU

Security: Encrypted images

Yocto BuildSystem

Meta-swupdate

Encrypted Artifact

Update Agent
(SWUpdate)

K

76
54

32

K

76
54

32

Symmetric Key

SWU

Suricatta mode

Backend Agent 1
(Hawkbit)

Backend Agent X
(who knows ?)

Intermediate Layer

Installer

suricatta

Automatic SWU Image build

● meta-swupdate to build swupdate and swu
● Rescue image recipe
● Provides a class to automatically generate and

sign a release image SWU

Creating own SWU
DESCRIPTION = "Example Compound image for beaglebone "
SRC_URI_beaglebone = "file://sw-description \
 "
inherit swupdate

LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COREBASE}/LICENSE;md5=4d92cd373abda3937c2bc47fbc49d690 \
 file://${COREBASE}/meta/COPYING.MIT;md5=3da9cfbcb788c80a0384361b4de20420"

IMAGE_DEPENDS: list of Yocto images that contains a root filesystem
it will be ensured they are built before creating swupdate image
IMAGE_DEPENDS = ""

SWUPDATE_IMAGES: list of images that will be part of the compound image
the list can have any binaries - images must be in the DEPLOY directory
SWUPDATE_IMAGES = " \
 core-image-full-cmdline \
 "

Images can have multiple formats - define which image must be
taken to be put in the compound image
SWUPDATE_IMAGES_FSTYPES[core-image-full-cmdline] = ".ext3"

COMPATIBLE = "beaglebone"

SWUpdate Roadmap

● Extend community
● SWUpdate as Updater Gateway
● Dynamic LUA Handlers / new Handlers
● Hardware Keys / TPM for decryption
● Delta update
● Chain Handlers for single artifact
● Add other backends, support multiple servers
● A new modern Website

Questions

http://sbabic.github.io/swupdate/

swupdate@googlegroups.com

http://sbabic.github.io/swupdate/

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38

