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Updating an Embedded 
System



  

About me

● Me:
– Software Engineer at DENX, Gmbh

– U-Boot Custodian for NXP's i.MX

– Focus on Linux embedded

– Author of FOSS SWUpdate



  

Do we update ?



  

Local Update



  

Push Software



  

Pull Software



  

Deployment systems



  

Rescue system



  

Requirement of updater ES
● Power-off safe
● Must not brick the device
● Atomic: must not apply half an 

update
● Secure

– Signing images and verification of 
images

– Prevent that device can be hijacked



  

Requirements - 2
● Remote unattended update
● Update of bootloader, kernel, filesystem
● Failsafe, Apply / rollback system updates
● It should take care of most important law

As much as possible !



  

Components to be update

● Bootloader
● Kernel
● Root filesystem
● System Application
● FPGAs
● Microcontroller, etc.
● Configuration



  

Single copy -1

Bootloader
SWUpdate

Rescue
Firmware

Config
Data, etc.

Flashing New version firmware



  

Double-copy

Bootloader Standby copy
Config

Data, etc.
Running copy

SWUpdate Flashing..
New software

SWUpdateStandby copy
Running copy

SWUpdate



  

Combine methods

U-Boot

Env

Kernel for
 SWUpdate

Ramdisk
SWUpdate

Copy-A

Copy-B

} 8MB

SPI NOR Flash

NAND / eMMC / SD

~4MB



  

SWUpdate
● Project started end 2014
● GPLv2, client library LGPLv2
● Often delivered together with BSP
● In the meantime:

– ~40 developers sent contribution

– Release cycle 3 months

– One of Yocto updater:
●

– Used by many devices in field

https://wiki.yoctoproject.org/wiki/System_Update

Deeds, not words !



  

Features - Basis

● Atomic update
● Embedded media

– eMMC, SD

– Raw NAND, UBI,NOR,SPI-NOR

● Single image (SWU) for multiple devices
● Power-Off safe
● Hardware-Software check

Deeds, not words !



  

Features - Interfaces

● Local Interface
● Remote interface / OTA

– integrated web server (PUSH mode)

– Backend: integrated REST client connector to 
hawkBit (PULL Mode)

– remote server download (PULL Mode)

– Custom interface (client library, LGPL)

Deeds, not words !



  

Features - Extended
● Integrated LUA interpreter

– modular with plugins in LUA

● Embedded Buildsystems
– Integrated in Yocto with meta-swupdate

– Officially supported by Buildroot

● Support for bootloader
– U-Boot

– GRUB

● Small footprint

Deeds, not words !



  

Features - next
● Fallback with bootloaders
● Image updater and file 

updater
● Interface to report progress
● Uses Kbuild for configuration
● Streaming without temporary 

copies

Deeds, not words !



  

Features - Security
● HTTPS protocol
● Use Certificates for server 

verification
● Signed Images
● Encrypted artifacts
● Privilege separation

● Installer usually runs as root
● Network processes runs on 

different user

Deeds, not words !



  

Structure SWU image

● CPIO format for simplicity
● sw-description  describes update
● Images data / artifacts

CPIO Header

sw-description

Image 1

Image 2

Image 3

Image i

Image n



  

sw-description

● Describe how to install a release
● Different parser

– libconfig (default)

– JSON

– Custom (LUA)
● Example: XML parser using LUAExpat 



  

SWUpdate’s architecture

Custom Process

Custom
 Parser
(LUA)

UBI

MTD

RAW

BootEnv

Custom

SWUpdate IPC

Handler manager

Notifier

JSON
Parser

Remote

Archive

Progress

Tracer / LOG

Local WebServerSuricatta Downloader

Installer Thread

LIBCONFIG
Parser

(default)

LUA Interpreter

Custom Process

Custom Process

Utilities

SWUpdate



  

Config



  

Sw-description : structure

Software = {
Version = “1.0.0”;

}

myhw = {
hardware-compatibility : [ “1.0”, “1.1”, “1.3”];

     

   }

images : (
{

filename = “rootfs.ext4.gz”;
device = “/dev/mmcblk0p1”;
type = “raw”;

});

files : ({
filename = “archive.tgz”;
type = “archive”;
Path = “/usr/share/myapp”; 

});

Header

Board specific

Section: images

Section: scriptsscripts : (
{

filename = “postinstall.sh”;
type = “shellscript”;

});

Section: files



  

One image for multiple devices

Software = {
Version = “1.0.0”;

}

hmi = {
hardware-compatibility : [ “1.0”, “1.1”, “1.3”];

     }

images : (
{

……...
});

Header

Target : HMI

Target: TypeA-1
TypeA-1 = {

Hardware-compatibility : [ “2.1”, “2.2”, “3.3”];

     }

images : (
{

……...
});



  

Collections
software =
{

version = "0.1.0";
myhw = {

hardware-compatibility: [ "1.0"];
stable : {

copy1 : {
images: (

{
filename = "core-image-full-cmdline-twister.ubifs";
type = "ubivol";
volume = "rootfs1";
sha256 = "@core-image-full-cmdline-twister.ubifs";

},
{

filename = "uImage-twister.bin";
type = "flash";
device = "/dev/mtd10";
sha256 = "@uImage-twister.bin";

});
scripts: (

{
filename = "test.lua";
type = "lua";
sha256 = "@test.lua";

});
               uboot: (
                                        {
                                         name = "nandroot";
                                  value = "rootfs1";
                                        },
                                        {
                                        name = "kernelpart";
                                  value = "kernel1";
                                        }

);
};



  

Collections
copy2 : {

images: (
{

filename = "core-image-full-cmdline-twister.ubifs";
type = "ubivol";
volume = "rootfs2"
installed-directly = true;
sha256 = "@core-image-full-cmdline-twister.ubifs";

},
{

filename = "uImage-twister.bin";
type = "flash";
device = "/dev/mtd11";
sha256 = "@uImage-twister.bin";

}
);
scripts: (

{
filename = "test.lua";
type = "lua";
sha256 = "@test.lua";

}
);

                                uboot: (
                                        {
                                        name = "nandroot";
                                  value = "rootfs2";
                                        },
                                        {
                                        name = "kernelpart";
                                  value = "kernel2";
                                        }

);
};

};



  

Handlers
● flash devices in raw mode (both NOR and NAND)
● UBI volumes
● Archives (tarballs,..)
● raw devices, such as a SD Card partition
● U-Boot environment
● LUA scripts
● Shell scripts
● Remote handler

But you can also create your own ...



  

Embedded Script

● Executive part of sw-description
● Description changed at runtime
● Use cases for Embedded Script:

– Check if an update is allowed

– Set Partitions

– Pre-install script

https://github.com/sbabic/meta-swupdate-boards/blob/master/recipes-extended/images/update-image-embscript/raspberrypi3/sw-description
https://github.com/sbabic/meta-swupdate-boards/blob/master/recipes-extended/images/update-image-embscript/raspberrypi3/sw-description


  

Rollback

● Together with U-Boot “bootcounter”
● Increment count in bootloader
● Reset after successful update / boot
● If reboots and count > threshold

– Bootloader knows update / boot failed

– Bootloader loads alternate boot 



  

Security: Signed images

Yocto BuildSystem

Meta-swupdate

Signed Image

Update Agent
(SWUpdate)
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Public Key

SWU



  

Security: Encrypted images

Yocto BuildSystem

Meta-swupdate

Encrypted Artifact

Update Agent
(SWUpdate)
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Symmetric Key

SWU



  

Suricatta mode

Backend Agent 1
(Hawkbit)

Backend Agent X
(who knows ?)

Intermediate Layer

Installer

suricatta



  

Automatic SWU Image build

● meta-swupdate to build swupdate and swu
● Rescue image recipe
● Provides a class to automatically generate and 

sign a release image SWU



  

Creating own SWU
DESCRIPTION = "Example Compound image for beaglebone "
SRC_URI_beaglebone = "file://sw-description \
           "
inherit swupdate

LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COREBASE}/LICENSE;md5=4d92cd373abda3937c2bc47fbc49d690 \
                    file://${COREBASE}/meta/COPYING.MIT;md5=3da9cfbcb788c80a0384361b4de20420"

# IMAGE_DEPENDS: list of Yocto images that contains a root filesystem
# it will be ensured they are built before creating swupdate image
IMAGE_DEPENDS = ""

# SWUPDATE_IMAGES: list of images that will be part of the compound image
# the list can have any binaries - images must be in the DEPLOY directory
SWUPDATE_IMAGES = " \
                core-image-full-cmdline \
                "

# Images can have multiple formats - define which image must be
# taken to be put in the compound image
SWUPDATE_IMAGES_FSTYPES[core-image-full-cmdline] = ".ext3"

COMPATIBLE = "beaglebone"



  

SWUpdate Roadmap

● Extend community
● SWUpdate as Updater Gateway
● Dynamic LUA Handlers / new Handlers
● Hardware Keys / TPM for decryption
● Delta update
● Chain Handlers for single artifact
● Add other backends, support multiple servers
● A new modern Website



  

Questions

http://sbabic.github.io/swupdate/

swupdate@googlegroups.com

http://sbabic.github.io/swupdate/
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