
Embedded Linux Conference 2017

Rust
Removing the Sharp Edges
from Systems Programming

Jonathan Creekmore <jonathan@thecreekmores.org>
Star Lab Corp.
@jcreekmore

mailto:jonathan@thecreekmores.org

Who is this guy?
❖ Systems programmer for over 15

years
❖ Specialities:

❖ Kernel & Driver development
❖ Software security

❖ Activities that bring me joy:
❖ Programming Language Theory
❖ Mathematics
❖ History
❖ Hiking
❖ Camping

What is Systems Programming?

❖ Provides services to other
software
❖ e.g. kernels, libraries,

daemons
❖ Typically resource constrained

❖ memory or cpu constrained
❖ special access to hardware

❖ Used to build abstractions for
application programmers

Sharp Edges: Manual Memory Management

❖ “Modern” apps programming languages (C#, Java,
JavaScript, etc.) usually provide a garbage collector

❖ Garbage collection introduces time/space inefficiencies

❖ Little to no runtime overhead desired

❖ Shared by many types of environments (no common GC
available)

❖ Used to build programs that may need specific control
over memory layout and allocation

Sharp Edges: Manual Memory Management

❖ Programmer managed:
❖ Scope of allocated memory
❖ Data races by writes to non-

exclusive access to memory

Speedy tour through Rust

A Helping Hand
❖ Strong, static typing

❖ Encodes ownership and
lifetimes into the type system

❖ Data is immutable by default

❖ Ownership is transferred by
default

❖ Programmer can choose to
borrow data rather than
transfer ownership

Memory leak issues in C

char *upcase(const char *in) {
 size_t len = strlen(in);
 char *out = (char *)malloc(len + 1);
 if (!out)
 return NULL;
 for (size_t i = 0; i < len; i++) {
 out[i] = toupper(in[[i]);
 }
}

void test() {
 char *test = strdup("Hello world");
 test = upcase(test);
}

Leak issue in Rust: Ownership transfer or borrow
// ownership transfer
fn upcase(input: String) -> String {
 let mut out = String::new();

 for c in input {
 out.push(toupper(c));
 }

 out
}

// borrowing
fn upcase2(input: &String) -> String {
 let mut out = String::new();

 for c in input {
 out.push(toupper(c));
 }

 out
}

Lifetime issue in C++

void test() {
 // Create a new BigObject
 BigObject *foo = new BigObject;

 // Get a reference to the object stored in
 // BigObject
 Object &bar = &foo->bar;

 // Some function consumes foo
 consume(foo);
 foo = NULL;

 // Use the bar reference we acquired earlier
 bar.doit();
}

Lifetime issue in Rust: Compile Time Error
fn consume(_: BigObject) {

}

fn test() {
 let foo = BigObject::new();
 let bar = &foo.bar;
 consume(foo);
 bar.doit();
}

error: cannot move out of `foo` because it is borrowed [--explain E0505]
 --> <anon>:26:13
 |>
25 |> let bar = &foo.bar;
 |> ------- borrow of `foo.bar` occurs here
26 |> consume(foo);
 |> ^^^ move out of `foo` occurs here

error: aborting due to previous error

https://doc.rust-lang.org/error-index.html#E0505

Data Race in C++
void test(std::deque<int> &in) {
 for (std::deque<int>::iterator it = in.begin(); it != in.end(); ++it) {
 if (*it % 2 == 0) {
 // If erasure happens anywhere* in the deque,
 // all iterators, pointers and references
 // related to the container are invalidated.
 in.erase(it);
 }
 }
}

Data Race in Rust: Compile Time Error
fn test(input: &mut Vec<usize>) {
 for (i, x) in input.iter().enumerate() {
 if x % 2 == 0 {
 input.remove(i);
 }
 }
}

error: cannot borrow `*input` as mutable because it is also borrowed as immutable [--explain E0502]
 --> <anon>:4:13
 |>
2 |> for (i, x) in input.iter().enumerate() {
 |> ----- immutable borrow occurs here
3 |> if x % 2 == 0 {
4 |> input.remove(i);
 |> ^^^^^ mutable borrow occurs here
5 |> }
6 |> }
 |> - immutable borrow ends here

https://doc.rust-lang.org/error-index.html#E0502

Exciting Features

Algebraic Data Types

type ProductTuple =
 (usize, String);

struct ProductStruct {
 x: usize,
 y: String,
}

enum Sum {
 Foo,
 Bar(usize, String),
 Baz { x: usize,
 y: String },
}

Product TypesSum Types

Pattern Matching
pub enum Sum {
 Foo,
 Bar(usize, String),
 Baz { x: usize, y: String },
}

fn test() {
 let foo = Sum::Baz { x: 42, y: "foo".into() };

 let value = match foo {
 Sum::Foo => 0,
 Sum::Bar(x, _) => x,
 Sum::Baz { x, .. } => x,
 };
}

Traits and Generics
trait Truthiness {
 fn is_truthy(&self) -> bool;
}

impl Truthiness for usize {
 fn is_truthy(&self) -> bool {
 match *self {
 0 => false,
 _ => true,
 }
 }
}

impl Truthiness for String {
 fn is_truthy(&self) -> bool {
 match self.as_ref() {
 "" => false,
 _ => true,
 }
 }
}

fn print_truthy<T>(value: T)
 where T: Debug + Truthiness
{
 println!("Is {:?} truthy? {}",
 &value,
 value.is_truthy());
}

fn main() {
 print_truthy(0);
 print_truthy(42);

 let empty = String::from("");
 let greet =
 String::from("Hello!");
 print_truthy(empty);
 print_truthy(greet);
}

Traditional Error Handling

❖ “I call it my billion dollar mistake. It was the invention of the
null reference in 1965” — Tony Hoare

❖ Dangerous because nothing is explicitly required to check for
NULL (in C/C++).

❖ Best practices and some static checkers look for it.

❖ Failure to check causes SEGFAULT in best case, undefined
behavior in worst case

❖ Common practice in C/C++ to overload return type with errors

Option type
❖ Option<T> is a sum type providing two constructors:

❖ Some<T>

❖ None

❖ Type system forces you to handle the error case

❖ Chaining methods allow code to execute only in success case:
❖ Some(42).map(|x| x + 8) => Some(50)

❖ Some(42).and_then(|x| Some(x + 8)) => Some(50)

❖ None.map(|x| x + 8) => None

Result type
❖ Result<T, E> is a sum type providing two constructors:

❖ Ok<T>

❖ Err<E>

❖ Type system again forces handling of error cases

❖ Same chaining methods available as Option<T>

❖ Provides a Result<T, E>::map_err(U) -> Result<T, U>
method

❖ Both Option<T> and Result<T, E> provide ways to convert between
each other

Other features in brief

❖ Unsafe code

❖ Break safety features in a delimited scope

❖ Foreign function interface

❖ Call out to C code and wrap existing libraries

❖ Hygienic macros

❖ Brings safety to generated code

Building Applications

Cargo
❖ Build tool and dependency manager for Rust

❖ Builds packages called “crates”

❖ Downloads and manages the dependency graph

❖ Test integration!

❖ Doc tests!

❖ Ties into crates.io, the community crate host

❖ See the Cargo documentation for a good Getting Started guide
(http://doc.crates.io/index.html)

http://crates.io
http://doc.crates.io/index.html

meta-rust

❖ Yocto layer for building Rust binaries

❖ https://github.com/meta-rust/meta-rust

❖ Support for:

Yocto Release Legacy version Default version

krogoth Rust 1.10 Rust 1.12.1

morty Rust 1.12.1 Rust 1.14

pyro Rust 1.14 Rust 1.16/17

https://github.com/meta-rust/meta-rust

cargo bitbake

❖ Tool for auto-generating a BitBake file from a
Cargo.toml file

❖ https://github.com/cardoe/cargo-bitbake

❖ Target BitBake file uses the meta-rust crate fetcher to
download dependencies

❖ Cargo is then used to build the target inside the Yocto
build process

https://github.com/cardoe/cargo-bitbake

Rough Edges

Rough Edges
❖ Fighting the borrow checker

❖ Takes a while to wrap your head around ownership

❖ Eventually, it does click

❖ Stable vs. unstable features

❖ Useful APIs and syntax are unstable-only

❖ Many useful libraries are immature

❖ async-I/O is a big one

❖ Cargo locks you in to its build methodology (partially mitigated by
cargo bitbake!)

Rust is a young language
❖ Stable 1.0 version only hit in May 2015

❖ 6-week release schedule brings us to 1.15 as of
February 2017

❖ More APIs continue to stabilize over time

❖ Compiler changes take longer

❖ Active community writing libraries

❖ Libraries tend to be in flux, though.

Want to give Rust a try?

https://www.rustup.rs

https://www.rustup.rs

