Building FAST Data Solutions
with DC/OS on Azure

Rob Bagby

Sr. Software Development
Engineer

rob.bagby@microsoft.com

FAST Data and the SMACK stack
- FAST Data

- loT-type solutions
- Speed of response time is crucial

- SMACK Stack

- Spark
- Mesos
- Akka
- Cassandra cassandra
- Kafka

Spor‘lgz

A& akka

This Session iIs DEMO-
Driven

Application Overview

% producer

()@kafka Y+])
Forso o N T /ﬁf
cccccccc 1agreader
consume i
cas:andra ®

We will illustrate enabling:

What How

1. Development Containers -&*

2. Running at scale Orchestrator — DC/OS é
- Big Data Solutions DC/OS
- Data Persistence Portworx ? portworx

3. Managing at scale Workflow Solution
- Autoscaling VAMP ovamp

- Workflows

Challenges containers address

- Running Cassandra / Kafka for Development
- Dependency issues
- Enabling application density

Running Cassandra / Kafka for Development

- Traditional Options

- Install locally — very difficult

- Shared instances
- Step on one another
- Not portable

- Containerized

docker run -d --name localcassandra -p 9042:9042 --network=sensor-network
-v C:/data:/var/lib/cassandra cassandra:3.10

docker run -d --name kafka -p 2181:2181 -p 9092:9092 --network=sensor-network
-env ADVERTISED HOST=172.30.0.1 --env ADVERTISED PORT=9092 spotify/kafka

e

endency Issues

C
p

C

Command Prompt

R

:\Users\robbag>python --version
ython 3.5.2

:\Users\robbag>

c

[3 Installation — Cassandr= X

@ Secure | https://datastax.github.io

Installation

Supported Platforms

|Python 2.6, 2.7, 3.3, and 3.4 are supported. #oth CPython (the standard
Python implementation) and PyPy are supported and tested.

Linux, OSX, and Windows are supported.

Installation through pip

pip is the suggested tool for installing packages. It will handle installing

all Python dependencies for the driver at the same time as the driver itself.

To install the driver*:

pip install cassandra-driver

Dependency encapsulation enables density

Dependencies Dependencies
Operating System Operating System

Container Engine

..

Virtual Machine Virtual Machine

Applications

Hardware Layer

Hardware Layer

Demo — Developing
Woler=11\Y,

Rob Bagby

We will illustrate enabling:

What How
1. Development Containers -&*
2. Running at scale Orchestrator
- Big Data Solutions DC/OS
- Data Persistence Portworx ? portworx
3. Managing at scale Workflow Solution
- Autoscaling VAMP ovamp

- Workflows

Challenges orchestrators address

- Treat multiple hosts as a single unit

- Determine where containers are started

- Monitor health of containers / applications
- Orchestrate application density

- Allow you to scale services

DC/OS Superpower

(vetted) Frameworks /
Services

Mesos Frameworks

- Applications that run on Mesos

- Distributed applications
- Controller — called the “Scheduler”
- Workers — called “Executors”

- Frameworks are “Cluster Aware”
- Specific needs / requirements of the application
- Cluster resources
- External triggers

Example — Cassandra Framework

_ Cassandra on DC/OS Cassandra Bare-Metal/
VM

Installation Automated Manual

Dynamic Resource Yes VMs Only (Complex)
Allocation & Resizing

Node Scaling Automated Manual

Multi Datacenter Simple Complex

Replication

Readiness Checks Yes No

Management Simple & Integrated Difficult & Isolated
HA Node Replace/Restart Automated Manual

Troubleshooting Simple Difficult

Custom DC/OS clusters on Azure: acs-

engir

O

&) Azure/acs-engine: Azun X =+ W

‘ ﬂ GitHub, Inc. [US] github.com/Azure/acs

‘ ’ This repository

Issues

Pull requests

Marketplace Gist

I} Azure / acs-engine @unwatch~ | 89 | rStar | 358 YFork 198

<> Code Issues 123 Pull requests 26 Projects 1 Wiki Insights +

Azure Container Service Engine - a place for community to collaborate and build the best open Docker container infrastructure

for Azure.
kubernetes dcos mesos docker swarm swarmmode orchestration containers azure
D 873 commits ¥ 9 branches 5 releases 22 56 contributors sk MIT

ch: master v

New pull request

Find file

Create new file Upload files

- seanknox committed on GitHub docs{github): include acs-engine version in issue template (#943)

g
1

0
9

W

): include acs-engine version in issue templat

M parts Enable cloudprovider rate limit / back

i pkg populate defau € in unmarshal (#939

i scripts ref(*): remove dead code

i test Cl improvements (#932

W vendor add validate tag for the purpose of required field

.dockerignore fix(dockerfile): pin version more correctly

https://github.com/issues

We will illustrate enabling:

What How
1. Development Containers -&*
2. Running at scale Orchestrator
- Big Data Solutions DC/OS
- Data Persistence Portworx ? portworx
3. Managing at scale Workflow Solution
- Autoscaling VAMP ovamp

- Workflows

Options for container persistence - Azure

- Azure Files
- VMs / Ephemeral Disks
- Attached / Managed Disks

- Pooled Storage
- GlusterFS
- Portworx

Challenges with Attached / Managed Disks

1. Container Rescheduling
- disk has to move

Challenges with Attached / Managed Disks

1. Container Rescheduling

- disk has to move
- or rescheduled on same node

Challenges with Attached / Managed Disks

1. Container Rescheduling

- disk has to move
- or rescheduled on same node

2. Container/Disk Challenges

- schedule all nodes together
- or 1:1 container:disk relationship

3. Max number of disks/VM

° »
[J
(] -»
° »
[
(] -
° »
[] 4
(] -
° »

Pooling Disks

Portworx

- Pooled software-defined storage solution
- Storage virtualization- serves virtual volumes
- Enterprise grade
? portworx
- Scheduler aware
- Per-volume encryption

- Backup
- Snapshots
- |f the scheduler moves a container, the volume moves with it

- Container-focused
- Docker volume driver

Demo — Running at Scale

Rob Bagby

We will illustrate enabling:

What How
1. Development Containers -&*
2. Running at scale Orchestrator
- Big Data Solutions DC/OS
- Data Persistence Portworx ? portworx
3. Managing at scale Workflow Solution
- Autoscaling VAMP ovamp

- Workflows

© vamp

CANARY RELEASING AND AUTOSCALING
FOR MICROSERVICE SYSTEMS

VAMP.10

VAMP Artifacts

Static

- Breeds — Describe entities

- Blueprints — Describe topologies

- Scales — Define the size of a deployed service

Runtime

- Deployments — Running Blueprints

- Workflows — NodeJS-bases workflow services
- Gateways — Stable Routing endpoints

Demo — Managing at
Scale

Rob Bagby

Session resources

- https://qithub.com/RobBagby/dcos-kaftka-cassandra
- https://github.com/RobBagby/dcos-primer
- http://www.deveducate.com

