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Who We are
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InstartLogic 
Cloud

Event Ingestion 
Server

Billing API Aggregation API Real User 
Monitoring

Ad-hoc queries, offline 
queries

Dataplatform : Streaming Channel
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What We Aggregate
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We Aggregate on : 

Aggregate Metrics

on different Dimensions

for different Granularity
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Dimensions

We have configurable way to define what all Dimension 
are allowed for given Granularity

This example for DAY Granularity

Similar Set Exists for 

HOUR and MINUTE

Let see the challenges of doing Streaming Aggregation on large 
set of Dimensions across for different Granularities
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Some Numbers on volume and traffic

Streaming Ingestion ~  200K RPS

50 MB / Seconds ~ 4.3 TB / Day

Streaming Aggregation on 5 min Window.

●  60 million Access Log Entries within 5 min Batch

●  ~100 Dimensions across 3 different Granularities.

●  Every log entry creates ~ 100 x 3 = 300 records

Key to handle such huge aggregations within 5 min window is to aggregate at stages..
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Multi Stage Aggregation using Spark and Elasticsearch...
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Spark Fundamentals

● Executor
● Worker
● Driver
● Cluster Manager
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Kafka Fundamentals
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Kafka and Spark
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Spark RDD ..Distributed Data in Spark

How are RDDs generated ? ..Let’s understand how we consume from Kafka
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Kafka Consumer for Spark

Apache Spark has in-built Kafka Consumer but we used a custom high performance consumer

I have open sourced Kafka Consumer for Spark Called Receiver Stream

(https://github.com/dibbhatt/kafka-spark-consumer)

It is also part of Spark-Packages : https://spark-packages.org/package/dibbhatt/kafka-spark-consumer

Receiver Stream has better control on Processing Parallelism.

Receiver Stream has some nice features like 

Receiver Handler, Back Pressure mechanism, 
WAL less end to end No-Data-Loss.

Receiver Stream has auto recovery mechanism from failure situations to keep the streaming channel alway up.

Contributed back all major enhancements we did in Kafka Receiver back to spark community.
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Streaming Pipeline Optimization 

P1

P2

P3

P4

P4

PN

Kafka 
Consumer

                                                                             

                                                                           

                                                                            

RDD at Time T1

RDD at Time T1 + 5

RDD at Time T1 + Nx5   

Kafka

Spark Job 
SchedulerKafka 

Publisher

Execute 
Jobs

ES

Too many variables to tune :

How many Kafka Partitions ?
How many RDD Partitions ?
How much Map and Reduce side partition ?
How much network Shuffle ? How many stages ?
How much spark Memory, CPU cores,  JVM Heap , GC overhead , memory back-pressure, 
Elasticsearch optimizations , bulk request, retry , bulk size , number of indices, number of shards ..

And so on.. 15



Revisit the volume 

Streaming Ingestion ~  200K RPS peak rate and growing

Streaming Aggregation on 5 min Window.

●  60 million Access Log Entries within 5 min Batch

●  100 Dimensions across 3 different Granularities.

●  Every log entry creates ~ 100 x 3 = 300 records

● ~ 20 billion records to aggregate upon in a single window.

Key to handle such huge aggregations within 5 min window is to aggregate at stages..
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Aggregation Flow

    Map : Per Partition logic

   Reduce : Cross Partition logic

Shuffle

Consumer Pulls compressed access log entries Kafka

Every compressed entries has N individual logs

Every log fan-out to multiple records (dimensions/granularity)

Every record is (key,value ) pair
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P1 R1

Spark Block Manager

Block Manager
RDD

Stage 1 : Aggregation at Receiver Handler

For each Compressed message : Aggregate
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Compressed Access Logs

de-compress



Block Manager
RDD

Stage 2 : Per Partition Aggregation : Spark Streaming Map 

Block Manager RDD

During Job run we observed Stage 1 and Stage 2 contributes to ~ 5 times reduction in object space.

E.g. with 200K RPS, 5 min batch consumes ~60 million access logs , and after Stage 1 and 2 , number of aggregated logs are 
around ~ 12 millions.

What is the Key to aggregate upon ?

For Each RDD  Partition : Aggregate
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Stage 3 : Fan-out and per-partition aggregation : Map

Block Manager
RDD

During Job run we observed Stage 3 contributes to ~ 8 times increase in object space. Note : Fan-out factor is 3 x 100 = 300

After stage 1 and stage 2 , number of aggregated records are around ~ 12 million. number of records after Stage 3 ~ 80 million

What is the key for aggregation ?

For Each Partition : Fan-Out and Aggregate

RDD

RDD
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Stage 4 : cross partition aggregation : Reduce

During Job run we observed after Stage 4, number of records reduces to ~ 500K

This number tally with the write RPS at ElasticSearch..

         Shuffle
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Multi-Stage Aggregation - In a Slide 
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Stage 5 : Elasticsearch final Stage Aggregation

● Reason: 
○ Batch Job: late arriving logs
○ Streaming Job: Each partition could have logs across multiple hours

 

Elasticsearch index
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End to End No Data Loss without WAL

Why WAL is recommended for Receiver Mode ?
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How we achieved WAL Less Recovery

Keep Track of Consumed and Processed Offset

Every Block written by Receiver Thread belongs to one Kafka Partitions.
Every messages written has metadata related to offsets and partition

Driver reads the offset ranges for every block and find highest offset for 
each Partitions. Commits offset to ZK after every Batch
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Spark Back Pressure
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Spark Executors Memory : JVM Which Executes Task

Storage Memory  : Used for Incoming Blocks
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Control System

It is a feedback loop from Spark Engine to Ingestion Logic
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PID Controller
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Input Rate throttled as Scheduling Delay and Processing Delay increases
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Thank You
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