
Real Time Aggregation with Kafka ,Spark Streaming and
ElasticSearch , scalable beyond Million RPS

Dibyendu B
Dataplatform Engineer, InstartLogic

1

Who We are

2

3

InstartLogic
Cloud

Event Ingestion
Server

Billing API Aggregation API Real User
Monitoring

Ad-hoc queries, offline
queries

Dataplatform : Streaming Channel

4

What We Aggregate

5

We Aggregate on :

Aggregate Metrics

on different Dimensions

for different Granularity

6

Dimensions

We have configurable way to define what all Dimension
are allowed for given Granularity

This example for DAY Granularity

Similar Set Exists for

HOUR and MINUTE

Let see the challenges of doing Streaming Aggregation on large
set of Dimensions across for different Granularities

7

Some Numbers on volume and traffic

Streaming Ingestion ~ 200K RPS

50 MB / Seconds ~ 4.3 TB / Day

Streaming Aggregation on 5 min Window.

● 60 million Access Log Entries within 5 min Batch

● ~100 Dimensions across 3 different Granularities.

● Every log entry creates ~ 100 x 3 = 300 records

Key to handle such huge aggregations within 5 min window is to aggregate at stages..
8

Multi Stage Aggregation using Spark and Elasticsearch...

9

Spark Fundamentals

● Executor
● Worker
● Driver
● Cluster Manager

10

Kafka Fundamentals

11

Kafka and Spark

12

Spark RDD ..Distributed Data in Spark

How are RDDs generated ? ..Let’s understand how we consume from Kafka

13

Kafka Consumer for Spark

Apache Spark has in-built Kafka Consumer but we used a custom high performance consumer

I have open sourced Kafka Consumer for Spark Called Receiver Stream

(https://github.com/dibbhatt/kafka-spark-consumer)

It is also part of Spark-Packages : https://spark-packages.org/package/dibbhatt/kafka-spark-consumer

Receiver Stream has better control on Processing Parallelism.

Receiver Stream has some nice features like

Receiver Handler, Back Pressure mechanism,
WAL less end to end No-Data-Loss.

Receiver Stream has auto recovery mechanism from failure situations to keep the streaming channel alway up.

Contributed back all major enhancements we did in Kafka Receiver back to spark community.
14

Streaming Pipeline Optimization

P1

P2

P3

P4

P4

PN

Kafka
Consumer

RDD at Time T1

RDD at Time T1 + 5

RDD at Time T1 + Nx5

Kafka

Spark Job
SchedulerKafka

Publisher

Execute
Jobs

ES

Too many variables to tune :

How many Kafka Partitions ?
How many RDD Partitions ?
How much Map and Reduce side partition ?
How much network Shuffle ? How many stages ?
How much spark Memory, CPU cores, JVM Heap , GC overhead , memory back-pressure,
Elasticsearch optimizations , bulk request, retry , bulk size , number of indices, number of shards ..

And so on.. 15

Revisit the volume

Streaming Ingestion ~ 200K RPS peak rate and growing

Streaming Aggregation on 5 min Window.

● 60 million Access Log Entries within 5 min Batch

● 100 Dimensions across 3 different Granularities.

● Every log entry creates ~ 100 x 3 = 300 records

● ~ 20 billion records to aggregate upon in a single window.

Key to handle such huge aggregations within 5 min window is to aggregate at stages..
16

Aggregation Flow

 Map : Per Partition logic

 Reduce : Cross Partition logic

Shuffle

Consumer Pulls compressed access log entries Kafka

Every compressed entries has N individual logs

Every log fan-out to multiple records (dimensions/granularity)

Every record is (key,value) pair

17

P1 R1

Spark Block Manager

Block Manager
RDD

Stage 1 : Aggregation at Receiver Handler

For each Compressed message : Aggregate

18

Compressed Access Logs

de-compress

Block Manager
RDD

Stage 2 : Per Partition Aggregation : Spark Streaming Map

Block Manager RDD

During Job run we observed Stage 1 and Stage 2 contributes to ~ 5 times reduction in object space.

E.g. with 200K RPS, 5 min batch consumes ~60 million access logs , and after Stage 1 and 2 , number of aggregated logs are
around ~ 12 millions.

What is the Key to aggregate upon ?

For Each RDD Partition : Aggregate

19

Stage 3 : Fan-out and per-partition aggregation : Map

Block Manager
RDD

During Job run we observed Stage 3 contributes to ~ 8 times increase in object space. Note : Fan-out factor is 3 x 100 = 300

After stage 1 and stage 2 , number of aggregated records are around ~ 12 million. number of records after Stage 3 ~ 80 million

What is the key for aggregation ?

For Each Partition : Fan-Out and Aggregate

RDD

RDD

20

Stage 4 : cross partition aggregation : Reduce

During Job run we observed after Stage 4, number of records reduces to ~ 500K

This number tally with the write RPS at ElasticSearch..

 Shuffle

21

Multi-Stage Aggregation - In a Slide

Daily

Partition 1

mlog

mlog

agg

agg

agg

agg

agg

agg

Hourly
agg

agg

Minute
agg

agg

Daily

Partition 2

mlog

mlog

agg

agg

agg

agg

agg

agg

Hourly
agg

agg

Minute
agg

agg

Daily
agg

agg

Hourly
agg

agg

Minute
agg

agg

Daily
agg

agg

Hourly
agg

agg

Minute
agg

agg

Minute Daily
Hourly
Minute

HourlyDaily

HourlyDaily

Partition3
Partition4

Node 1

Node 2

message
level
merge

Partition
Level
Merge

Fan-out
each
records

global
aggregation

Map function Reduce function
Minute

stage: 1 stage: 2 stage: 3 stage: 4

partition level merge

Daily
Hourly
Minute

22

Stage 5 : Elasticsearch final Stage Aggregation

● Reason:
○ Batch Job: late arriving logs
○ Streaming Job: Each partition could have logs across multiple hours

Elasticsearch index

agg
key:val

agg
key:val

agg
key:val

agg
key:val

Batch or
mini Batch

1

Batch or
mini Batch

2

Batch or
mini Batch

3

Batch or
mini Batch

4

time

agg
key:val

23

End to End No Data Loss without WAL

Why WAL is recommended for Receiver Mode ?

24

How we achieved WAL Less Recovery

Keep Track of Consumed and Processed Offset

Every Block written by Receiver Thread belongs to one Kafka Partitions.
Every messages written has metadata related to offsets and partition

Driver reads the offset ranges for every block and find highest offset for
each Partitions. Commits offset to ZK after every Batch

25

Spark Back Pressure

26

Spark Executors Memory : JVM Which Executes Task

Storage Memory : Used for Incoming Blocks

27

Control System

It is a feedback loop from Spark Engine to Ingestion Logic

28

PID Controller

29

Input Rate throttled as Scheduling Delay and Processing Delay increases

30

Thank You

31

