
The friendly operating system for the IoT

by Thomas Eichinger (on behalf of the RIOT community)
OpenIoT Summit NA 2017

Why?
How?
What is RIOT?

Why?
How?
What is RIOT?

Why a software platform for the IoT?

● Linux, Arduino, … bare metal?

● But as IoT software evolves …
○ More complex pieces e.g. an IP network stack

○ Evolution of application logic

● … non-portable IoT software slows innovation
○ 90% of IoT software should be hardware-independent

→ this is achievable with a good software platform (but not if you develop bare metal)

Why a software platform for the IoT?

✓ faster innovation by spreading IoT software dev. costs

✓ long-term IoT software robustness & security

✓ trust, transparency & protection of IoT users’ privacy

✓ less garbage with less IoT device lock-down

Why?
How?
What is RIOT?

Experience (e.g. with Linux) points towards

● Open source

● Free core

● Driven by a grassroot community

Indirect business models

Geopolitical neutrality

How to achieve our goals?

Main Challenges of an OS in IoT

Low-end IoT device resource constraints

● Kernel performance
● System-level interoperability
● Network-level interoperability
● Trust

SW platform on low-end IoT devices

● The good news:
○ No need for advanced GUI (a simple shell is sufficient)
○ No need for high throughput performance (kbit/s)
○ No need to support dozens of concurrent applications

● The bad news:
○ kBytes of memory!
○ Typically no MMU!
○ Extreme energy efficency must be built in!

SW platform on low-end IoT devices

● Contiki
●
● TinyOS
● myNewt
● FreeRTOS

● mbedOS (ARM)
● Zephyr (Intel)
● LiteOS (Huawei)
● …
● and closed source alternatives

Reference: O. Hahm et al. "Operating Systems for Low-End Devices in the Internet of Things: A
survey," IEEE Internet of Things Journal, 2016.

Why?
How?
What is RIOT?

IoT

RIOT: an OS that fits IoT devices

internet

● Free, open source (LGPLv2.1) operating system for the IoT
○ Write your code in ANSI-C or C++

○ Providing some POSIX features like pthreads and sockets

○ No IoT hardware needed for development

■ Run & debug RIOT as native process on Linux

Meet RIOT

Why?
How?
What is RIOT?

Kernel performance
Connectivity
Portability
Trust

● Microkernel architecture (for robustness)
○ The kernel uses ~1.5K RAM on 32-bit architectures

● Tickless scheduler (for energy-efficiency)

● Deterministic O(1) scheduling (for real-time)

● Low latency interrupt handling (for reactivity)

● Modular structure (for adaptivity)

● Preemptive multi-threading & powerful IPC

RIOT Specs

Architecture

Architecture

Connectivity

Portability

Why?
How?
What is RIOT?

Kernel performance
Connectivity
Portability
Trust

Connectivity

● Use what you need
Flexible module based stack

✓ Many different PHY technologies
(IEEE802.15.4, IEEE802.3, Bluetooth, NFC, serial, CAN bus)

✓ Interoperability tested IETF 6lo implementation
✓ IPv6
✓ UDP, TCP
✓ COAP, MQTT-SN (in the making)

Connectivity cont'd

● 3rd-party packages
○ lwIP stack
○ uIP (emb6) stack
○ Thread (OpenThread) stack

● Experimetal stacks
○ CCN-Lite
○ NDN-RIOT

Why?
How?
What is RIOT?

Kernel performance
Connectivity
Portability
Trust

● Code your application once & run everywhere
○ Various 32-bit platforms, but 16-bit and 8-bit platforms are supported

too (ARM, x86, MSP430, MIPS, AVR...)
○ Independent from hardware vendors and their specific solutions
○ gcc standard toolchain, but llvm is usable too

● Use existing libraries
○ libcoap
○ libfixmath
○ lwip

Portability

○ micro-ecc
○ relic

● Easy porting of RIOT to new hardware
○ periph Interfaces

■ Porting is a matter of hours or days

■ E.g. support for new ARM Cortex-M boards is `trivial`

○ Reusable *_common modules

■ Reduce code duplication

Portability cont'd

● Posix sockets, pthreads
(use familiar concepts)

● Shell
(interact with your board via shell, use ps and ifconfig)

● Crypto & hashes
(aes, 3des, md5, sha1, sha256, …)

● C++11
● Arduino

(run your arduino sketch on RIOT)
● Cbor
● SenML

sys/*

Why?
How?
What is RIOT?

Kernel performance
Connectivity
Portability
Trust

Trust

● if secured & understood,
○ IoT is positively

groundbreaking
● else

○ IoT may be one of the
greatest threads in human
history

Privacy?
Security?

Reliability?

IoT == challenging

Some level of trust?

Combining RIOT & Linux, IoT is possible with

● End-to-end open source
● End-to-end secure & open communication standards
● From anywhere in the Internet all to the way to (low-end) IoT devices

● 2008 - 2012
○ Ancestors of kernel stem from research projects (FireKernel, uKleos)

● 2013 - 2017
○ Branding of RIOT started, source code moved to Github, major

development of the network stack and the OS as such

● Speed evolution
○ Of the codebase
○ Of the community

RIOT Roots & Evolution

● 3690 commits in in 2016
● ~150 contributors (~30 maintainers)
● 60+ boards
● 35+ MCUs
● 25+ Sensors
● 1 RIOT Summit
● 1 RIOT Foundation

RIOT in Numbers

● Time based release model (3 months cycles)
● Roadmap, to help focusing on specific topics
● Task Forces (to work on specific topics)
● Open development process (github)
● Monthly Hack&Ack sessions
● Mailing lists
● IRC channel

RIOT Community Work

RIOT in a nutshell

Free, open source platform for portable IoT software

RIOT offers a platform
functionally equivalent
to Linux, based on:

Open source,

Open-access protocol stacks

Community driven development

News: https://twitter.com/RIOT_OS
For cooperation questions: riot@riot-os.org
For developer questions: devel@riot-os.org

Support & discussions on IRC: irc.freenode.org
#riot-os

Thanks for your interest!

