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Why a software platform for the IoT?

● Linux, Arduino, … bare metal?

● But as IoT software evolves …
○ More complex pieces e.g. an IP network stack

○ Evolution of application logic

● …  non-portable IoT software slows innovation
○ 90% of IoT software should be hardware-independent

→ this is achievable with a good software platform (but not if you develop bare metal)



Why a software platform for the IoT?

✓ faster innovation by spreading IoT software dev. costs

✓ long-term IoT software robustness & security

✓ trust, transparency & protection of IoT users’ privacy

✓ less garbage with less IoT device lock-down
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Experience (e.g. with Linux) points towards

● Open source

● Free core

● Driven by a grassroot community

Indirect business models

Geopolitical neutrality

How to achieve our goals?



Main Challenges of an OS in IoT

Low-end IoT device resource constraints

● Kernel performance
● System-level interoperability
● Network-level interoperability
● Trust



SW platform on low-end IoT devices

● The good news:
○ No need for advanced GUI (a simple shell is sufficient)
○ No need for high throughput performance (kbit/s)
○ No need to support dozens of concurrent applications

● The bad news:
○ kBytes of memory!
○ Typically no MMU!
○ Extreme energy efficency must be built in!



SW platform on low-end IoT devices

● Contiki
●
● TinyOS
● myNewt
● FreeRTOS

● mbedOS (ARM)
● Zephyr (Intel)
● LiteOS (Huawei)
● …
● and closed source alternatives

Reference: O. Hahm et al. "Operating Systems for Low-End Devices in the Internet of Things: A 
survey," IEEE Internet of Things Journal, 2016.
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IoT

RIOT: an OS that fits IoT devices

internet



● Free, open source (LGPLv2.1) operating system for the IoT
○ Write your code in ANSI-C or C++

○ Providing some POSIX features like pthreads and sockets

○ No IoT hardware needed for development

■ Run & debug RIOT as native process on Linux

Meet RIOT
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● Microkernel architecture (for robustness)
○ The kernel uses ~1.5K RAM on 32-bit architectures

● Tickless scheduler (for energy-efficiency)

● Deterministic O(1) scheduling (for real-time)

● Low latency interrupt handling (for reactivity)

● Modular structure (for adaptivity)

● Preemptive multi-threading & powerful IPC

RIOT Specs



Architecture



Architecture

Connectivity

Portability
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Connectivity

● Use what you need
Flexible module based stack

✓ Many different PHY technologies 
(IEEE802.15.4, IEEE802.3, Bluetooth, NFC, serial, CAN bus)

✓ Interoperability tested IETF 6lo implementation
✓ IPv6
✓ UDP, TCP
✓ COAP, MQTT-SN (in the making)



Connectivity cont'd

● 3rd-party packages
○ lwIP stack
○ uIP (emb6) stack
○ Thread (OpenThread) stack

● Experimetal stacks
○ CCN-Lite
○ NDN-RIOT
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● Code your application once & run everywhere
○ Various 32-bit platforms, but 16-bit and 8-bit platforms are supported 

too (ARM, x86, MSP430, MIPS, AVR...)
○ Independent from hardware vendors and their specific solutions
○ gcc standard toolchain, but llvm is usable too

● Use existing libraries
○ libcoap
○ libfixmath
○ lwip

Portability

○ micro-ecc
○ relic



● Easy porting of RIOT to new hardware
○ periph Interfaces 

■ Porting is a matter of hours or days

■ E.g. support for new ARM Cortex-M boards is `trivial`

○ Reusable *_common modules

■ Reduce code duplication

Portability cont'd



● Posix sockets, pthreads 
(use familiar concepts)

● Shell 
(interact with your board via shell, use ps and ifconfig)

● Crypto & hashes 
(aes, 3des, md5, sha1, sha256, …)

● C++11
● Arduino

(run your arduino sketch on RIOT)
● Cbor
● SenML

sys/*
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Trust

● if secured & understood,
○ IoT is positively 

groundbreaking
● else

○ IoT may be one of the 
greatest threads in human 
history

Privacy?
Security?

Reliability?

IoT == challenging 



Some level of trust?

Combining RIOT & Linux, IoT is possible with

● End-to-end open source
● End-to-end secure & open communication standards
● From anywhere in the Internet all to the way to (low-end) IoT devices



● 2008 - 2012
○ Ancestors of kernel stem from research projects (FireKernel, uKleos)

● 2013 - 2017
○ Branding of RIOT started, source code moved to Github, major 

development of the network stack and the OS as such

● Speed evolution
○ Of the codebase
○ Of the community

RIOT Roots & Evolution



● 3690 commits in in 2016
● ~150 contributors (~30 maintainers)
● 60+ boards
● 35+ MCUs
● 25+ Sensors
● 1 RIOT Summit
● 1 RIOT Foundation

RIOT in Numbers



● Time based release model (3 months cycles)
● Roadmap, to help focusing on specific topics
● Task Forces (to work on specific topics)
● Open development process (github)
● Monthly Hack&Ack sessions
● Mailing lists
● IRC channel 

RIOT Community Work



RIOT in a nutshell

Free, open source platform for portable IoT software

RIOT offers a platform
functionally equivalent
to Linux, based on:

Open source,

Open-access protocol stacks

Community driven development



News: https://twitter.com/RIOT_OS
For cooperation questions: riot@riot-os.org
For developer questions: devel@riot-os.org

Support & discussions on IRC: irc.freenode.org 
#riot-os

Thanks for your interest!




