Pros and Cons of using Cloudstack with local storage

Swen Brueseke
Twitter: @SwenBrueseke
Blog: swen.io
WHO WE ARE AND WHAT WE DO

• RemoteHands
• German cloud provider (megona.de)
• Managed Services
WHAT YOU NEED TO ASK FIRST

- System VMs on shared or local storage?
- Think about your SLA
- What do your customers really need?
- Management overhead
- Hypervisor (KVM not supported, CLOUDSTACK-7982)
- Compute Offerings
- Disk Offerings
- Keep it simple
OUR SETUP WE STARTED WITH

Hypervisor

DataCore

Storage
WHAT WE SAVED

- DataCore licenses
- DataCore hardware
- DataCore network infrastructure
- Storage switches
- A lot of storage hardware
PROBLEMS WE RUN INTO

• With volumes (migration)
• With data volumes (only works when attached to VMs)
• With snapshots (cleanup, leftovers)
• With templates (cleanup, leftovers)
• With local storage overprovisioning (value ignored in earlier versions)
• With XenServer (monitor local storage, thin provisioning, upgrades)
WHAT WE USE

• Samsung SSD PM863 / SM863
• Dell PowerEdge R620/R720/R730
• Intel X520 Dual Port 10G NIC
• Juniper EX4550
THE FUTURE

• New in XenServer 7.1: Live Patching (Enterprise Edition)
• Storage Live Migration (Support for KVM)
• Data disk migration
PROS AND CONS

PROS
• Better IOPS
• Save network infrastructure
• Save storage hardware
• Keep it simple

CONS
• No live migration on KVM
• Data disk migration only when attached
• Unavailable data by host outage
• No HA for VMs
• Management overhead
Thank You

Swen Brueske
Twitter: @SwenBrueske
Blog: swen.io
MIGRATION FROM SHARED TO LOCAL

1. Create new service offerings (compute and disk)
2. Write down internal name of instance
3. Shutdown instance
4. Migrate primary storage of instance via UI to local storage
5. Get id of new service offerings out of db
 mysql> select * from disk_offering where name='<name of offering>'
 Note down id of disk_offering where state is 'Active'
6. Get id of volumes attached to instance
 mysql> select * from volumes where instance_id='<id>'
 Note down id
 The instance_id is the last number of internal name of instance. (i-2-220-VM)
7. Change service_offering for instance
 mysql> update vm_instance set service_offering_id='<id of 5>' where id='<instance_id>';
8. Change disk_offering of volumes
 mysql> update volumes set disk_offering_id='<id of 5>' where id='<id of 6>'';
9. Double-check values in UI
10. Start instance
1. CS is telling XenServer to create a snapshot (first)
2. XenServer is creating a snapshot on local storage
3. XenServer is mounting secondary storage and copies snapshot
4. XenServer is unmounting secondary storage
5. Workflow end
6. CS is telling XenServer to create a second snapshot
7. XenServer is creating a delta snapshot (chain) on local storage
8. XenServer is mounting secondary storage and copies delta snapshot
9. XenServer is unmounting secondary storage
10. XenServer is using coalesce to merge snapshot chain on local storage
11. Workflow end
12. And so on...

So the last snapshot of a volume will always stay on local storage. In earlier version there was no cleanup job when the vm was deleted. So your local storage will fill up with unneeded snapshots.