

Maker Board Designs To Industrial Grade Systems

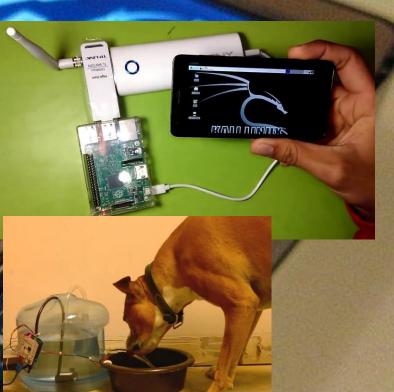
#define thing

- What is an IoT device?
 - Sense
 - Communicate
 - Control
- Technology is available TODAY

const Legacy Device =

- A device or system already installed
- Capital expenditure already made
- Still functioning
- Not connected

#define Control_System



- A device, or set of devices, that manages, commands, directs or regulates the behavior of other devices or systems
- Control systems are used in production for controlling equipment or machines

Maker Boards Are Awesome

- Designed for software education
- Made inventors and tinkerer of many

A Bigger Opportunity

- Leverage maker community in industrial applications
- Over 10 Million Pi's shipped
- Huge pool of engineering talent

Scaling IoT to Industrial IoT

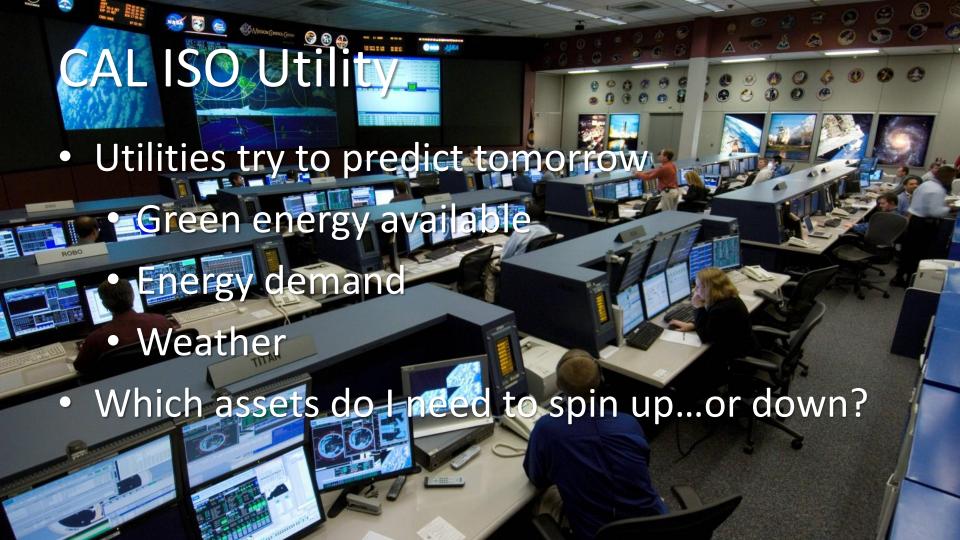
The Big Opportunity

- California's green grid
- Up to 19% of California daily energy requirement comes from green renewable sources
 - Solar panels, hydroelectric, wind turbines
- GREAT With a couple hurdles
 - Not always available
 - Not always needed
 - No way to store the extra electricity

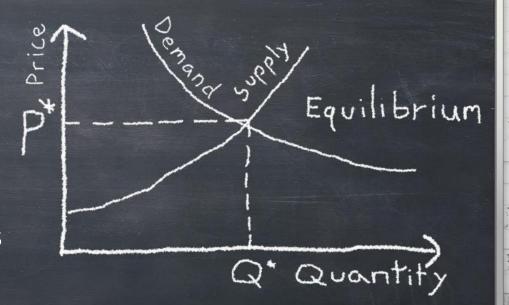
Demand Fluctuates

- Oversupply of electricity on the grid during the day
- As people return home from work, they turn on appliances, TVs, & AC increasing demand as supply decreases

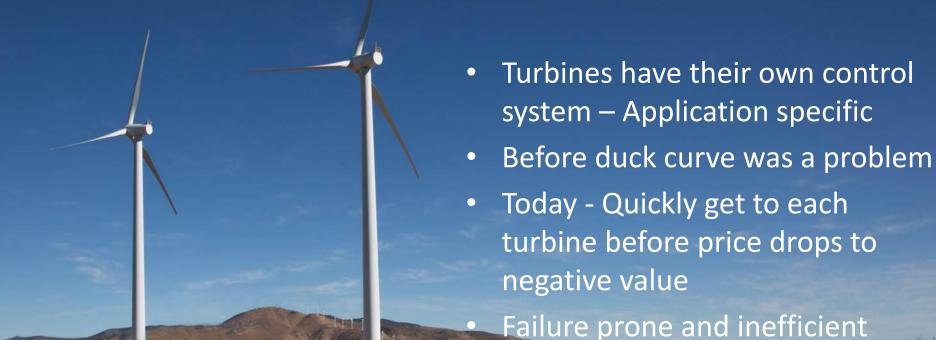
CA Duck Curve



- Not enough energy for the grid
- Utilities notify producers
- Increase production generate electricity
- Reach supply/demand equilibrium
- Grid must kept in balance



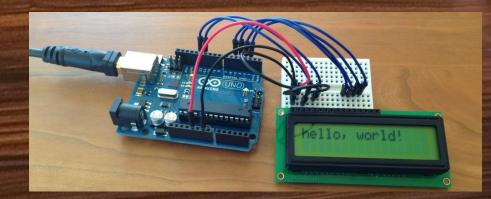
- Too much renewable energy?
- Takes 24 hours to spin up or wind down a nuclear or natural gas plant
- Much easier to curtail renewable energy sources



Equilibrium

- Supply & Demand
- Spot price of electricity
- Price fluctuates by minutes

A Tale of Two Turbines



Imagine this scenario...

- 3:00 a.m. remote wind farm
- Cold desert hills with six old wind turbines installed 20 years ago
- The "dark ages" No WWW, WiFi, cloud or big data
- Turbines have no intelligence
- Designed to be controlled from the PHYSICAL WORLD (Green ON, Red OFF buttons)

What's an IoT device again?

- It senses Temperature, speed, humidity
- It Communicates Internet protocols
- It controls Maybe using 3.3 VDC

BLADES \bigcirc

Lift and rotate when hit by wind, causing the rotor to spin.

ROTOR (

Combination of the blades and hub.

PITCH SYSTEM (

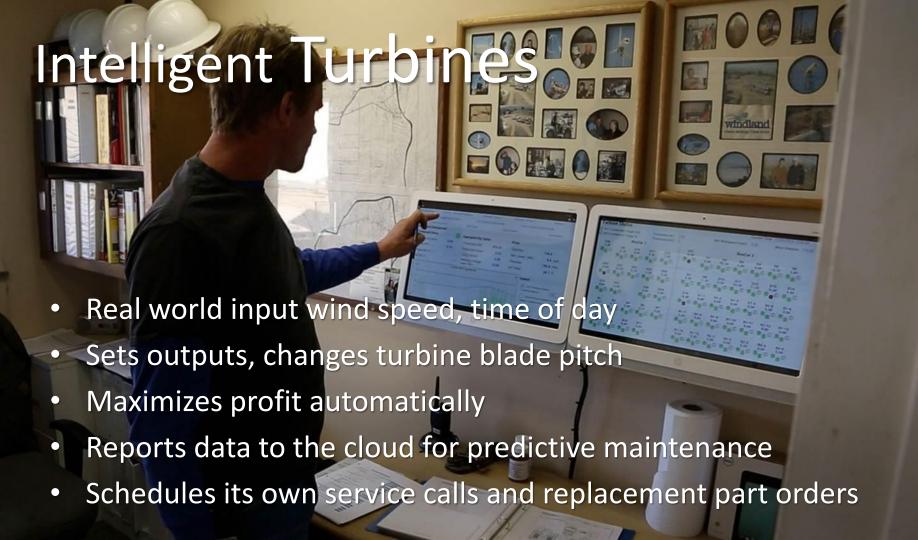
Turns blades out of the wind to control rotor speed. Also, stops the rotor from spinning in conditions where wind is blowing too slow or too fast.

─ GENERATOR

Produces 60-cycle AC electricity within the turbine.

-(CONTROLLER

Starts and stops the turbine from working, depending on conditions.


YAW DRIVE

Controls upwind turbines to orient them should wind direction change.

TOWER

The base of the turbine, built to support the rest of the structure.

The REAL Internet of Things

- Things autonomously monitoring digital world
- Determining when to take action in the real world
- Based on big data they generate
- Analyzed in the cloud they're now connected to

Environmental Applications

- 2010 Gulf oil spill 3.2 million barrels
- 16 previous fires and numerous safety issues
- 77 people evacuated after accidental ballast pipe removal
- Remote asset data acquisition
- Could a predictive analytics system have caught the problem before it happened?

Technology Gap

Industrial World

- Physical value creation
- Legacy HW/SW reliable & risk averse
- Ladder logic, function block
- Long-life, high-cost hardware
- Voltages and currents
- Proprietary networks
- Sensors, motors, pumps

Maker Community

- Applications bridge digital and physical
- Latest technology & constant change
- RESTful APIs, JavaScript, node.js
- Low-cost Pls, PCs
- Bits and bytes
- TCP/IP, HTTP/S, MQTT
- Open Technology

Why use a PI?

- Great for rapid prototyping
- Easy to learn
- Cheap
- Available
- Has some GPIO Connect sensors to it
- SD card for storage

Mission Critical Applications

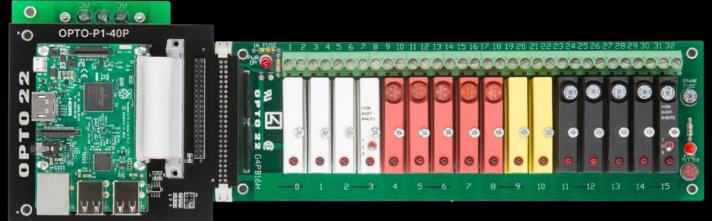

- I/O channel isolation
- EMI Resistance
- Power loss recovery
- File system recovery
- Pi's not designed for deployment

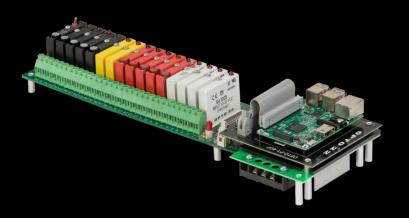
Bridge The Gap

- Eventually makers become engineers
- Physical world and digital world connect
- Industrial Equipment natively speaks IoT protocols
- Voltages & currents available to the cloud
- REST, HTTP, MQTT, node.js, JavaScript

Opportunity Size

- In the absence of analyst data...
- I'm in the industrial space
- We make input/output (I/O) modules—over 100 million shipped by just Opto 22
- Consider many other manufacturers
 - Rockwell, Siemens, GE, Schneider
- Maybe you can change the world?


IIoT Development Platform


- Industrially hardened interface
- Bridges physical and digital gap
- Translates voltages and current into languages of IoT
- Survive harsh industrial environments
- I/O for sensors, transmitters, relays
- IoT Communication & programming capabilities
- node.js, JavaScript, HTTP, RESTful APIs

But Just In Case...

- Not a mission critical application?
- Raspberry Pi > GPIO > Industrial I/O
- Switch 5-60 VDC, 120/240 AC From your Pi
- Your app scaled to industrial grade

