
Confidential + Proprietary

Can we do better than
HTTP/JSON?

Varun Talwar

@varungyan

Open Source Leadership Summit, Feb 2017

Confidential + Proprietary

Why is JSON so popular?

1. Simple
2. Self describing
3. Easy to debug
4. Easy to process in languages
5. Browser tooling
6. Less verbose than XML

Lacks

1. Extend as needed
2. Performance
3. Storage size

Confidential + Proprietary

The Fallacies of Distributed Computing

The network is reliable

Latency is zero

Bandwidth is infinite

The network is secure

https://blogs.oracle.com/jag/resource/Fallacies.html

Topology doesn't change

There is one administrator

Transport cost is zero

The network is homogeneous

https://blogs.oracle.com/jag/resource/Fallacies.html
https://blogs.oracle.com/jag/resource/Fallacies.html

Confidential + Proprietary

Yes, we can

An open, performant, resilient and universal way to connect and operate distributed
systems and provide a framework to make much smarter clients and servers

Confidential + Proprietary

Making Google frameworks available in Open

Kubernetes

Borg

Stubby

Confidential + Proprietary

Microservices at Google
~O(1010) RPCs per second.

Images by Connie
Zhou

Confidential + Proprietary

Open source on Github for C, C++, Java, Node.js,
Python, Ruby, Go, C#, PHP, Objective-C

Confidential + Proprietary

What is gRPC?

● HTTP/2 and Protocol Buffer based RPC framework
● Evolution of Stubby; being adopted at Google as next gen framework
● Open, Secure, Performant, Multiplatform

Multiplatform

● Idiomatic APIs in popular languages (C++, Go, Java, C#, Node.js, Ruby,
PHP, Python)

● Supports mobile devices (Android Java, iOS Obj-C)
● Linux, Windows, Mac OS X

Confidential + Proprietary

● 1.1 with stable APIs
● Joining CNCF soon :-)
● Well documented with an active

community
● Reliable with continuous running tests

○ Deployable in your environment

● Measured with an open performance
dashboard

○ Deployable in your environment

● Well adopted inside and outside
Google

Where is the project today?

Confidential + Proprietary

Microservices: in data centres

Streaming telemetry from network devices

Client Server communication/Internal APIs

Mobile Apps

Some early adopters

Confidential + Proprietary

 PROTOBUF &
 HTTP/2

Confidential + Proprietary

Protocol Buffers are

● Efficient
○ Binary protocol; much faster serialization
○ 3-10x smaller and 20-100x faster than XML[1]

○ 1.5-3x smaller and 1.5-3x faster than JSON[2]

● With Simple IDL
● Strong typing -> avoids errors earlier & can enforce strict contracts
● Allows to extend/grow -> API evolution
● Used for logging, storage, and talking to other servers

https://www.corp.google.com/eng/howto/protocolbuffers/developerguide/index.shtml#whynotxml
https://github.com/eishay/jvm-serializers/wiki

Confidential + Proprietary

How does it look?

$ cat student.proto
// Definition of a Student object

syntax = "proto2";
option cc_api_version = 2;
option java_api_version = 2;

package social;

message Student {
 required int32 unique_id = 1;
 required string first_name = 2;
 ...
 optional double gpa = 8;
 optional string nickname = 9 [default = "bob"];
 repeated int32 friend_id = 10;
}

.proto

Compiler

.cc, .py, .java,
.js, .go

0101101000111

0101101000111

Binary / text

Run-time

Confidential + Proprietary

How we roll at Google

Confidential + Proprietary

HTTP/1.x vs HTTP/2
http://http2.golang.org/gophertiles

http://www.http2demo.io/

http://http2.golang.org/gophertiles?latency=30
http://http2.golang.org/gophertiles?latency=30
http://www.http2demo.io/
http://www.http2demo.io/

Confidential + Proprietary

History of HTTP

1991 1993 1995 1997 1999

HTTP/0.9

2001 2003 2005 2007 2009 2011 2013

HTTP/1.0

HTTP/1.1

2015 2017

?

Confidential + Proprietary

History of HTTP

1991 1993 1995 1997 1999

HTTP/0.9

2001 2003 2005 2007 2009 2011 2013

HTTP/1.0

HTTP/1.1

SPDY

HTTP/2.0

2015 2017

Confidential + Proprietary

HTTP/2

HTTP/2 is extending, not replacing, the previous HTTP standards.

The application semantics of HTTP are the same::

• HTTP header fields
• HTTP Methods
• Request-response
• Status codes
• URIs

HTTP/2 modifies how the data is formatted (framed) and transported between
the client and server.

Confidential + Proprietary

HTTP/2 breaks down the
HTTP protocol
communication into an
exchange of
binary-encoded frames,
which are then mapped to
messages that belong to a
stream, and all of which
are multiplexed within a
single TCP connection.

Binary Framing

 Stream 1 HEADERS

 Stream 2

 :method: GET
 :path: /kyiv
 :version: HTTP/2
 :scheme: https

 HEADERS
 :status: 200
 :version: HTTP/2
 :server: nginx/1.10.1
 ...

 DATA

<payload>

 Stream N

Request

Response

TCP

Confidential + Proprietary

• Single TCP connection.
• No Head-of-line blocking.
• Binary framing layer.
• Request –> Stream.
• Header Compression.

HTTP/2 in One Slide

Transport(TCP)

Application (HTTP/2)

Network (IP)

Session (TLS) [optional]

Binary Framing

HEADERS Frame

DATA Frame

HTTP/2

 POST: /upload
 HTTP/1.1
 Host: www.javaday.org.ua
 Content-Type: application/json
 Content-Length: 27

HTTP/1.x

 {“msg”: “Welcome to 2017!”}

Confidential + Proprietary

 KEY DESIGN
 PRINCIPLES

Google Cloud Platform

Coverage & Simplicity

The stack should be available on every popular
development platform and easy for someone to build
for their platform of choice. It should be viable on
CPU & memory limited devices.

gRPC Principles & Requirements

http://www.grpc.io/blog/principles

Confidential + Proprietary

gRPC Speaks Your Language

● Java
● Go
● C/C++
● C#
● Node.js
● PHP
● Ruby
● Python
● Objective-C

● MacOS
● Linux
● Windows
● Android
● iOS

Service definitions and client libraries Platforms supported

Confidential + Proprietary

Interoperability

Java
Service

Python
Service

GoLang
Service

C++
Service

gRPC
Service

gRPC
Stub

gRPC
Stub

gRPC
Stub

gRPC
Stub

gRPC
Service

gRPC
Service

gRPC
Service

gRPC
Stub

Confidential + Proprietary

Easy to get started

Google Cloud Platform

General Purpose and Performant

The stack should be applicable to a broad class of
use-cases while sacrificing little when compared to a
use-case specific stack

gRPC Principles & Requirements

http://www.grpc.io/blog/principles

Confidential + Proprietary

gRPC vs JSON/HTTP for Google Cloud Pub/Sub

Publishing 50KB messages at
maximum throughput from a
single n1-highcpu-16 GPE VM

instance, using 9 gRPC channels.

More impressive than the
almost 3x increase in

throughput, is that it took only
1/4 of the CPU resources.

11x difference per CPU3x increase in throughput

Source Blog of Cloud Pubsub

Confidential + Proprietary

Some
external
perf
comparisons

Google Cloud Platform

Pluggable

Large distributed systems need security,
health-checking, load-balancing and failover,
monitoring, tracing, logging, and so on.
Implementations should provide extensions points
to allow for plugging in these features and, where
useful, default implementations.

gRPC Principles & Requirements

http://www.grpc.io/blog/principles

Confidential + Proprietary

Interceptors

Client Server

Request

Response

Client
interceptors

Server
interceptors

Google Cloud Platform

Payload Agnostic

Different services need to use different message
types and encodings such as protocol buffers, json,
xml, thrift; the protocol and implementations must
allow for this. Similarly the need for payload
compression varies by use-case and payload type:
the protocol should allow for pluggable
compression mechanisms.

gRPC Principles & Requirements

http://www.grpc.io/blog/principles

Google Cloud Platform

Flow Control

Computing power and network capacity are often
unbalanced between client and server. Flow control
allows for better buffer management as well as
providing protection from DOS by an overlay active
peer.

gRPC Principles & Requirements

http://www.grpc.io/blog/principles

Google Cloud Platform

Network Control

Operations can be expensive and long lived.
Cancellation allows servers to reclaim resources
when clients are well-behaved.
Deadlines let servers know what is the expected
time of response and behave accordingly.

gRPC Principles & Requirements

http://www.grpc.io/blog/principles

Google Cloud Platform

Streaming

Storage systems rely on streaming and flow control
to express large data sets. Other services like voice
to text or stock tickers rely on streaming to
represent temporally related message sequences.

gRPC Principles & Requirements

http://www.grpc.io/blog/principles

Confidential + Proprietary

gRPC Service Definitions

Unary RPCs where the
client sends a single
request to the server
and gets a single
response back, just like
a normal function call.

The client sends a
request to the server
and gets a stream to
read a sequence of
messages back.

The client reads from
the returned stream
until there are no more
messages.

The client send a
sequence of messages
to the server using a
provided stream.

Once the client has
finished writing the
messages, it waits for
the server to read them
and return its response.

Client streaming

Both sides send a
sequence of messages
using a read-write
stream. The two
streams operate
independently. The
order of messages in
each stream is
preserved.

BiDi streamingUnary Server streaming

Google Cloud Platform

Metadata Exchange

Common cross cutting concerns like auth and
tracing rely on the exchange of data that is not part
of declared interface. Deployments rely on their
ability to evolve these features at a different rate to
the individual APIs exposed by services.

gRPC Principles & Requirements

http://www.grpc.io/blog/principles

Confidential + Proprietary

● Common IDL with performant serializer gives better performance and
improves developer productivity

● Framework handling hard concepts like streaming, deadlines, cancellations,
flow control help makes devs life easier and services thinner

● Framework handling stats/tracing/logging, LB in a uniform way allows for
easy change management and uniform observability

In summary, gRPC and Stubby have some lessons

Single horizontal framework for all service-service communication with
logging, monitoring, tracing, network controls, service discovery, load
balancing built in; makes lives much easier within an organization

Confidential + Proprietary

Let’s build on top and make it stronger
● Building on !

○ First class Web support
○ First class caching, compression support
○ First class debugging and testing support
○ First class metrics and tracing support
○ Tooling for testing, docgen, samplegen
○ Automagic retries
○ Smart load balancing support
○ First class service discovery and service-service auth

Together we can leverage this framework and let all developers build smarter
clients and servers

Confidential + Proprietary

Thank you and join us !

Twitter: @grpcio

Site: grpc.io

Group: grpc-io@googlegroups.com

Repo: github.com/grpc

 github.com/grpc/grpc-java

 github.com/grpc/grpc-go

mailto:grpc-io@googlegroups.com

Confidential + Proprietary

 Q & A

41

HTTP metadata (headers).

Not compressed plain text headers for
each and every HTTP request.

Workarounds: cookies, sessions,
concatenation, sprinting, etc.

H1 Protocol Overhead

Confidential + Proprietary

Confidential + Proprietary

Trends

- Open Source
- IOT
- Mobile First
- AI First
- Public/Hybrid Clouds
- VR/AR
- Microservices
- SaaS/XaaS
- Software Defined Everything

Confidential + Proprietary

Trends

- Open Source => Spreading everywhere !
- IOT => millions of devices, constrained resources, reliable network
- Public/Hybrid Cloud => distributed environments, cloud services
- VR/AR => resource intensive, battery/data consuming
- Microservices => network performance matters
- SaaS/XaaS => consume anything from anywhere
- Mobile first => first class mobile libs
- Software Defined Everything => Apps, Config, Networks

We can do better in this world where IOT, performance matters, developer
productivity and agility matters, resilience matters, microservices, multi-cloud,

Confidential + Proprietary

HTTP1.x/JSON doesn’t cut it !

1. WWW, browser growth - bled into services
2. Stateless
3. Text on the wire
4. Loose contracts
5. TCP connection per request
6. Nouns based
7. Harder API evolution
8. Think compute, network on cloud platforms

1

Confidential + Proprietary

Establish a lingua franca

1. Protocol Buffers - Since 2003.
2. Start with IDL
3. Have a language agnostic way of agreeing on data semantics
4. Code Gen in various languages
5. Forward and Backward compatibility
6. API Evolution

2

Confidential + Proprietary

Design for fault tolerance and control

● Sync and Async APIs

● Need fault tolerance: Deadlines, Cancellations

● Control Knobs: Flow control, Service Config, Metadata

3

48

● Policies where server tells client
what they should do

● Can specify deadlines, lb policy,
payload size per method of a
service

● Loved by SREs, they have more
control

● Discovery via DNS

Service Config

Confidential + Proprietary

Don’t fly blind: Stats4

● What is the mean latency time per RPC?
● How many RPCs per hour for a service?
● Errors in last minute/hour?
● How many bytes sent? How many connections to my server?

Confidential + Proprietary

Data collection by arbitrary metadata is useful

● Any service’s resource usage and performance stats in real time by (almost) any
arbitrary metadata
1. Service X can monitor CPU usage in their jobs broken down by the name of the invoked RPC and

the mdb user who sent it.
2. Ads can monitor the RPC latency of shared bigtable jobs when responding to their requests,

broken down by whether the request originated from a user on web/Android/iOS.
3. Gmail can collect usage on servers, broken down by according POP/IMAP/web/Android/iOS.

Layer propagates Gmail's metadata down to every service, even if the request was made by an
intermediary job that Gmail doesn't own

● Stats layer export data to varz and streamz, and provides stats to many
monitoring systems and dashboards

Confidential + Proprietary

Diagnosing problems: Tracing5

● 1/10K requests takes very long. Its an ad query :-) I need to find out.
● Take a sample and store in database; help identify request in sample which

took similar amount of time

● I didnt get a response from the service. What happened? Which link in the
service dependency graph got stuck? Stitch a trace and figure out.

● Where is it taking time for a trace? Hotspot analysis
● What all are the dependencies for a service?

Confidential + Proprietary

Load Balancing is important !5

Iteration 1: Stubby Balancer
Iteration 2: Client side load balancing
Iteration 3: Hybrid
Iteration 4: gRPC-lb

Confidential + Proprietary

HTTP/2 in the Wild

• Apache Tomcat 8.5+

• Apache HTTP Server
2.4.17+ (C)

• NGINX (C)

• Jetty

• Netty

• Undertow

• Vert.x

• OkHttp (Android)

• and more

○curl 7.43.0+

○Wireshark

○jmeter

○HTTP/2 Test

○h2i

○h2load

○and more

• Chrome

• Firefox

• Safari*

• Opera

• Edge

• IE 11*

• Android Browser

• Chrome for Android

• iOS Safari

*only HTTP/2 over TLS (https)

Browsers

• JEP 110: HTTP/2
Client.

• JEP 244: TLS ALPN
Extension.

JavaImplementations Tools

https://github.com/http2/http2-spec/wiki/Implementations
https://github.com/http2/http2-spec/wiki/Tools
http://caniuse.com/#feat=http2

https://github.com/http2/http2-spec/wiki/Implementations
https://github.com/http2/http2-spec/wiki/Implementations
https://github.com/http2/http2-spec/wiki/Tools
https://github.com/http2/http2-spec/wiki/Tools
http://caniuse.com/#feat=http2
http://caniuse.com/#feat=http2

Confidential + Proprietary

Agility & Resilience

Confidential + Proprietary

Developer Productivity

Confidential + Proprietary

Performance

Confidential + Proprietary

Deadline Propagation

Gateway

90 ms

Now =
1476600000000

Deadline =

1476600000200

40 ms

20 ms

20 ms 60 ms

withDeadlineAfter(200, MILLISECONDS)

Now =
1476600000040

Deadline =

1476600000200

Now =
1476600000150

Deadline =

1476600000200

Now =
1476600000230

Deadline =

1476600000200

DEADLINE_EXCEEDED DEADLINE_EXCEEDED DEADLINE_EXCEEDED DEADLINE_EXCEEDED

58

Deadlines are expected.

What about unpredictable cancellations?

• User cancelled request.

• Caller is not interested in the result any
more.

• etc

Cancellation?

Confidential + Proprietary

Cancellation?

GW

Busy Busy Busy

Busy Busy Busy

Busy Busy Busy

Active RPC Active RPC

Active RPC

Active RPC Active RPCActive RPC

Active RPC Active RPC

Active RPC

Confidential + Proprietary

Cancellation Propagation

GW

Idle Idle Idle

Idle Idle Idle

Idle Idle Idle

