
Asymmetric Multiprocessing

and Embedded Linux
Marek NOVAK, Dusan CERVENKA

October 24, 2017

Who are we?

• Marek NOVAK

– Author/maintainer of RPMsg-Lite library

– PhD student

• Dusan CERVENKA

– Author/maintainer of eRPC library

• Both

– Linux entousiasts

– Working at NXP Semiconductors

Outline
Asymmetric Multiprocessing (AMP)

Remote Processor Messaging (RPMsg)

in Linux kernel

RPMsg-Lite – RPMsg for RTOS

Embedded Remote Procedure Call (eRPC)

Asymmetric Multiprocessing (AMP)

Motivation – why AMP? 1/2

• Thanks to AMP, your system can:

– Be faster

– Consume less power

– Be safer

– Be more secure

• How?

Motivation – why AMP? 2/2

• Not all CPUs in the system are treated equally

• The cores can:

– Run independently

– Have different operating systems

– Have different architecture, clock frequency

– Be tailored for a specific task (DSP)

How does it work?

• There is a concept of
master and slave

• Master manages
shared memory

• Master may control
slave’s life-cycle

Remote Processor Messaging

(RPMsg) in Linux kernel

What is RPMsg?

• RPMsg defines a

UDP-like header

• Only the header is

strictly defined,

there exist multiple

transport mechanism

RPMsg in Linux - History

• RPMsg used to have only one transport layer

based on VirtIO

• Initially maintained by Ohad Ben Cohen

• Now maintained by Bjorn Andersson (Linaro)

• New transport layers added – Glink and SMD

– Mostly for Qualcomm platforms

RPMsg in Linux – Current State 1/2

RPMsg in Linux – Current State 2/2

RPMsg/VirtIO 1/3

• Single writer single reader approach

• Allows for zero-copy

• 2 ring buffers for each direction

RPMsg/VirtIO 2/3

RPMsg/VirtIO 3/3

RPMsg-Lite – RPMsg for RTOS

Library Architecture 1/2

Library Architecture 2/2

• Environment (“RTOS”) porting layer

• Platform (“hardware”) porting layer

• Modular and simple

• BSD licensed

• FreeRTOS port (done) and Zephyr port (TBD)

• Github: https://github.com/NXPmicro/rpmsg-lite

Embedded Remote Procedure Call

(eRPC)

• What is RPC?

• Why eRPC?

• How to use eRPC?

What is RPC?

Why eRPC? 1/2

Other RPC:
• Apache Thrift
• Microsoft RPC
• Google RPC
• JSON-RPC
• …

Why eRPC? 2/2

• Small code size

• Programing languages: C/C++, Python, … ?

• APIs style defined by user.

• Generated stub code

• Easy to port: BM, FreeRTOS, Zephyr(TBD)

• Modular and simple

• BSD-3: https://github.com/EmbeddedRPC/erpc

https://github.com/EmbeddedRPC/erpc

How to use eRPC? 1/3

Dual core device – Linux core + Cortext-M core

• Main core – Multimedia applications, web server, …

• Second core – communicating through radio

How to use eRPC? 2/3

• Interface Definition Language (IDL):

• Generated declaration:

interface Radio {
send_packet(uint16 addr, uint8 dataLength,

binary data @length(dataLength)) -> bool
}

bool send_packet(uint16_t addr, uint8_t dataLength,
const uint8_t* data);

How to use eRPC? 3/3

Q & A

• RPMsg-Lite: https://github.com/NXPmicro/rpmsg-lite

• Marek NOVAK: marek.novak@nxp.com

• eRPC: https://github.com/EmbeddedRPC/erpc

• Dusan CERVENKA: dusan.cervenka@nxp.com

https://github.com/NXPmicro/rpmsg-lite
mailto:marek.novak@nxp.com
https://github.com/EmbeddedRPC/erpc
mailto:dusan.cervenka@nxp.com

