The Scheduler meets the network

Arunabha Ghosh

Moz
Outline

• Motivation
• Brief history of network evolution
• The network and Mesos
• Open Questions
• Conclusions
The big divide

App

App

Network
Common Goal

• End goal for both is communication.
• Apps and networks have different, complementary views on communications
 – Apps know intent really well, but can’t change the network (much)
 – The network knows the implementation of connectivity, but can’t divine app intent easily.
A (very) brief (and incorrect) tour of network evolution
Early LAN

Broadcast based

Single collision domain
ARP

I don’t know PC-2’s MAC address I’ll send an ARP

I got the ARP but I am not 192.168.1.2

I got the ARP and I am 192.168.1.2 let me send my MAC Address to PC-1

I got the ARP but I am not 192.168.1.2
To grow the network, add more switches
A virtual LAN or ‘VLAN’ allows us to do precisely that.

Multiple logical LANs sharing physical hardware.

Usually a VLAN is a logical unit at both L2 and L3 layers. One subnet per VLAN.
So, life is good?

Loops cause LANs to become sick. Only one spanning tree is used at any given time.

Lots of paths, but only one used.

Can’t have a mesh network.
Solution.

Use L3 fabric to transport L2 frames

Many incarnations, VXLAN, NVGRE..
WAN
Need to connect multiple geographically disparate networks into one logical network.

e.g. connect all company offices
Solution

Create tunnels across sites

Any problems?
Have the service provider routers maintain a distinct route table per customer.

IPSec link replaced with MPLS
Another implementation

IP network

CE PE P P PE CE

IP-in-IP Encapsulation

Original Endpoints

Tunnel Endpoints

Outer IP Header Original IP Header Other Optional Headers

Original IP Payload Original IP Payload
Can we do this all in software?

- Yes!
 - X86 is much faster now. Encapsulation and Decapsulation is (relatively) inexpensive
 - Linux networking stack is very flexible and robust
Recap

• Networks are much more flexible than they appear to apps
 – Functionality provided by a network doesn’t always need to ‘physically’ exist.
 – Interfaces matter, implementation can change

• Thanks to Moore’s law, possible to do quite a bit in software.

• Apps know intent much better than networks
What does this have to do with Mesos?
So why don’t we have more dynamic networks which can be partly app specified?
Problem

• Network control is not scoped. All or nothing
 – Network control plane only understands network entities (IP, mac etc). Can’t easily differentiate between apps, so config capabilities can’t easily be scoped.

• No uniform interface

• Some network resources are scarce and need to be globally managed (external IP addresses). E.g. what if every app wanted AF4 traffic
Thought experiment

• What if the strong separation between apps and network was weakened. What could we do?

• Robust, fine grained access control.
 – Only allow the web servers to talk to the app servers.

• Easy discovery
 – IP per container
 – Always give this entity the same address regardless of it’s physical location.

• Tailored QOS
 – Make sure traffic between app servers and database get’s the highest priority.

• Many more.
Solution

• If only we had an entity that
 – Was aware of all apps.
 – In charge of scheduling and orchestration.
 – Managed app lifecycles.
 – Had a global view of scarce resources and could arbitrate conflicting requests.
 – Present a uniform interface to apps.
 – Trusted by the operator.
Can I do this today?
https://github.com/mesosphere/net-modules

More coming soon!
Warning, opinions ahead

YEAH?

WELL, YOU KNOW, THAT'S JUST LIKE, YOUR OPINION, MAN!
Open questions

• What app intents should be captured?
 – ACLs
 • Only app servers should be able to talk to database servers
 – QOS
 • Make sure traffic between DB master and slave gets high priority.
 – Reachability
 • How should the app be reachable?
 – Fixed DNS name
 – Random IP from available pool
 – Floating IP from pool
 – Etc
 – Others?
Open questions

• What should the API between Mesos and the network virtualization system look like.
• Standard interfaces are critical !
Open questions

• What information should flow between Mesos and the network virtualization infrastructure?
• What information should flow in the other direction?
Open questions

• How should responsibilities be divided?
 – Master
 • Arbitrate global network resources?
 – Slave Agent
 • Integrate with local network agent?
 – Framework
 – Do we need anything else?
Open questions

• How should schedulable network resources be handled?
 – Work in early stages
 • https://docs.google.com/document/d/1peq17w9d9KZ0ZkAyF_uS9KIFbVX63VlkaRsIP4PWzOc/edit#heading=h.yvd9qbi4swb4
Open questions

• How do we express and integrate operator policies.
Conclusion

• Integration of network virtualization techniques with Mesos has tremendous potential.
• Possible to do a lot of cool things.
• Lot’s of unanswered questions.
• Community needs to discuss and weigh in.
Thanks!

• Feel free to reach out

agh@moz.com