

Distributed Deep Learning on Mesos with GPUs and Gang Scheduling

Min Cai, Alex Sergeev, Paul Mikesell, Anne Holler, UBER

Who are we?

Min Cai Alex Sergeev Paul Mikesell Anne Holler

Deep Learning @ UBER

- Use cases:
 - Self-Driving Vehicles
 - Trip Forecasting
 - Fraud Detection

Self-Driving Vehicles

Self-Driving Vehicles

Trip Forecasting

Fraud Detection

Spam referral code

Partner up with the same driver

Cash out Uber credits

Why Distributed Deep Learning?

- Speed up model training
- Scale out to hundreds of GPUs
- Shard large models that can not fit into a single machine

How Distributed Deep Learning Works

Why Mesos?

- Widely adopted
- GPU Support
- Nested Containers
- Highly Customizable
- Reliable and Scalable

Mesos Support for GPUs

- Mesos Containerizer only
- Docker Containerizer support is not landed to upstream yet

Mesos Agent

Mesos Nested Containers

- Separate management code from user docker images
- Avoid dependency conflict

What is Missing?

- Elastic GPU Resource Management
- Locality and Network aware Placement
- Gang Scheduling
- Task Discovery
- Failure Handling

Peloton Overview

Peloton Architecture

Elastic GPU Resource Management

Resource Pools

Gang Scheduling

- A subset of Tasks in a Job can be specified for Gang Scheduling
- Gang tasks are a single scheduling unit
 - Admitted, placed, preempted and killed as a group
- Gang tasks are independent execution units
 - Run in separate containers and may fail independently
- Gang execution is terminated if a gang task fails and cannot be restarted

Placement Strategies

- Place as many as container into the same host or rack
- Best fit algorithm to tightly packing GPU containers
- Constraint based placement for same generation of GPUs

Why TensorFlow?

- Most popular Open Source framework for Deep Learning
- Combines high performance with ability to tinker with low level model details
- Has end-to-end support from research to production

Architecture for Distributed TensorFlow

Architecture for Distributed TensorFlow on Mesos

Distributed Training Performance

Training with synthetic data on NVIDIA[®] Pascal[™] GPUs

Distributed Training Performance

Training with synthetic data on NVIDIA[®] Pascal[™] GPUs

Can We Do Better?

- Improve communication algorithm
- Use RDMA-capable networking (RoCE, InfiniBand)

Horovod

- Distributed training framework for TensorFlow
- Uses bandwidth-optimal communication protocols
 - Makes use of RDMA (RoCE, InfiniBand) if available
- Seamlessly installs on top of TensorFlow via pip install horovod

Architecture for Horovod

Patarasuk, P., & Yuan, X. (2009). Bandwidth optimal all-reduce algorithms for clusters of workstations. *Journal of Parallel and Distributed Computing*, 69(2), 117-124. doi:10.1016/j.jpdc.2008.09.002

Architecture for Horovod on Mesos

Distributed Training Performance with Horovod

Training with synthetic data on NVIDIA[®] Pascal[™] GPUs

Distributed Training Performance with Horovod

Training with synthetic data on NVIDIA[®] Pascal[™] GPUs

What About Usability?

import argparse
import sys

import tensorflow as tf

FLAGS = None

def main(_):
 ps_hosts = FLAGS.ps_hosts.split(",")
 worker_hosts = FLAGS.worker_hosts.split(",")

Create a cluster from the parameter server and worker hosts. cluster = tf.train.ClusterSpec({"ps": ps_hosts, "worker": worker_hosts})

if FLAGS.job_name == "ps": server.join() elif FLAGS.job_name == "worker":

Assigns ops to the local worker by default. with tf.device(tf.train.replica_device_setter(worker_device='/job:worker/task:%d" % FLAGS.task_index, cluster=cluster)):

Build model...
loss = ...
global_step = tf.contrib.framework.get_or_create_global_step()

The StopAtStepHook handles stopping after running given steps. hooks=[tf.train.StopAtStepHook(last_step=1000000)]

checkpoint_dir="/tmp/train_logs hooks=hooks) as mon_sess: while not mon sess.should stop();

Run a training step asynchronously. # See `tf.train.SyncReplicasOptimizer` for additional details on how to # perform *synchronous' training. # mon_sess.run handles AbortedError in case of preempted PS. mon_sess.run(train_op)

[__name__ == "__main_": parser = argarse.ArgumentParser() parser.register('type', 'bool', lambda v: v.lower() == 'true') # Flags for defining the thrain.ClusterSpec parser.add argument(true) vtppe=tr, ' type=tr, ' help='comme-separated list of hostname:port pairs'

parser.add argument(
 "--worKer_hosts",
 type=str,
 default="",
 help="(comma-separated list of hostname:port pairs")

) parser.add_argument("--job_name", type=str, default="",

help="One of 'ps', 'worker'"
)
Flags for defining the tf.train.Server

transition and the statement of the

FLAGS, unparsed = parser.parse_known_args()

import tensorflow as tf import horovod.tensorflow as hvd

Initialize Horovod
hvd.init()

Pin GPU to be used

config = tf.ConfigProto()
config.gpu_options.visible_device_list = str(hvd.local_rank())

Build model...

loss = ...

opt = tf.train.AdagradOptimizer(0.01)

Add Horovod Distributed Optimizer opt = hvd.DistributedOptimizer(opt)

Add hook to broadcast variables from rank 0 to all other processes during initialization. hooks = [hvd.BroadcastGlobalVariablesHook(0)]

Make training operation

train_op = opt.minimize(loss)

The MonitoredTrainingSession takes care of session initialization,

restoring from a checkpoint, saving to a checkpoint, and closing when done # or an error occurs.

with tf.train.MonitoredTrainingSession(checkpoint_dir="/tmp/train_logs",

config=config, hooks=hooks) as mon_sess:

while not mon_sess.should_stop():

Perform synchronous training. mon_sess.run(train_op)

Horovod is available on GitHub today https://github.com/uber/horovod

Thank you!

Any questions?

