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Who are we?

Min Cai Alex Sergeev Paul Mikesell Anne Holler



Deep Learning @ UBER

• Use cases:
– Self-Driving Vehicles
– Trip Forecasting
– Fraud Detection



Self-Driving Vehicles



Self-Driving Vehicles



Trip Forecasting



Fraud Detection

Spam referral 
code

Partner up with 
the same driver

Cash out Uber 
credits



Why Distributed Deep Learning?

• Speed up model training
• Scale out to hundreds of GPUs
• Shard large models that can not fit into a 

single machine



How Distributed Deep Learning Works



Why Mesos?

• Widely adopted
• GPU Support
• Nested Containers
• Highly Customizable
• Reliable and Scalable



Mesos Support for GPUs

• Mesos Containerizer only
• Docker Containerizer support is not landed to upstream yet



Mesos Nested Containers

• Separate management code 
from user docker images

• Avoid dependency conflict



What is Missing?

• Elastic GPU Resource Management
• Locality and Network aware Placement
• Gang Scheduling
• Task Discovery
• Failure Handling



Peloton Overview



Peloton Architecture



Elastic GPU Resource Management



Resource Pools



Gang Scheduling

• A subset of Tasks in a Job can be specified for 
Gang Scheduling

• Gang tasks are a single scheduling unit
– Admitted, placed, preempted and killed as a group

• Gang tasks are independent execution units
– Run in separate containers and may fail independently

• Gang execution is terminated if a gang task fails 
and cannot be restarted



Placement Strategies

• Place as many as container into the same 
host or rack

• Best fit algorithm to tightly packing GPU 
containers

• Constraint based placement for same 
generation of GPUs



Why TensorFlow?

• Most popular Open Source framework for 
Deep Learning

• Combines high performance with ability to 
tinker with low level model details

• Has end-to-end support from research to 
production



Architecture for Distributed TensorFlow



Architecture for Distributed TensorFlow on Mesos



Distributed Training Performance
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Distributed Training Performance
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Can We Do Better?

• Improve communication algorithm
• Use RDMA-capable networking (RoCE, 

InfiniBand)



Horovod

• Distributed training framework for TensorFlow
• Uses bandwidth-optimal communication 

protocols 
– Makes use of RDMA (RoCE, InfiniBand) if available

• Seamlessly installs on top of TensorFlow via
pip install horovod



Architecture for Horovod

Patarasuk, P., & Yuan, X. (2009). Bandwidth optimal all-reduce algorithms for clusters of workstations. Journal 
of Parallel and Distributed Computing, 69(2), 117-124. doi:10.1016/j.jpdc.2008.09.002



Architecture for Horovod on Mesos



Distributed Training Performance with Horovod
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Distributed Training Performance with Horovod
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What About Usability?
import tensorflow as tf
import horovod.tensorflow as hvd

# Initialize Horovod
hvd.init()

# Pin GPU to be used
config = tf.ConfigProto()
config.gpu_options.visible_device_list = str(hvd.local_rank())

# Build model...
loss = ...
opt = tf.train.AdagradOptimizer(0.01)

# Add Horovod Distributed Optimizer
opt = hvd.DistributedOptimizer(opt)

# Add hook to broadcast variables from rank 0 to all other processes during initialization.
hooks = [hvd.BroadcastGlobalVariablesHook(0)]

# Make training operation
train_op = opt.minimize(loss)

# The MonitoredTrainingSession takes care of session initialization,
# restoring from a checkpoint, saving to a checkpoint, and closing when done
# or an error occurs.
with tf.train.MonitoredTrainingSession(checkpoint_dir="/tmp/train_logs", 

config=config, hooks=hooks) as mon_sess:
while not mon_sess.should_stop():

# Perform synchronous training.
mon_sess.run(train_op)



Giving Back

Horovod is available on GitHub today
https://github.com/uber/horovod



Thank you!

Any questions?


