
Distributed Deep Learning on Mesos with
GPUs and Gang Scheduling

Min Cai, Alex Sergeev, Paul Mikesell, Anne Holler, UBER

Who are we?

Min Cai Alex Sergeev Paul Mikesell Anne Holler

Deep Learning @ UBER

• Use cases:
– Self-Driving Vehicles
– Trip Forecasting
– Fraud Detection

Self-Driving Vehicles

Self-Driving Vehicles

Trip Forecasting

Fraud Detection

Spam referral
code

Partner up with
the same driver

Cash out Uber
credits

Why Distributed Deep Learning?

• Speed up model training
• Scale out to hundreds of GPUs
• Shard large models that can not fit into a

single machine

How Distributed Deep Learning Works

Why Mesos?

• Widely adopted
• GPU Support
• Nested Containers
• Highly Customizable
• Reliable and Scalable

Mesos Support for GPUs

• Mesos Containerizer only
• Docker Containerizer support is not landed to upstream yet

Mesos Nested Containers

• Separate management code
from user docker images

• Avoid dependency conflict

What is Missing?

• Elastic GPU Resource Management
• Locality and Network aware Placement
• Gang Scheduling
• Task Discovery
• Failure Handling

Peloton Overview

Peloton Architecture

Elastic GPU Resource Management

Resource Pools

Gang Scheduling

• A subset of Tasks in a Job can be specified for
Gang Scheduling

• Gang tasks are a single scheduling unit
– Admitted, placed, preempted and killed as a group

• Gang tasks are independent execution units
– Run in separate containers and may fail independently

• Gang execution is terminated if a gang task fails
and cannot be restarted

Placement Strategies

• Place as many as container into the same
host or rack

• Best fit algorithm to tightly packing GPU
containers

• Constraint based placement for same
generation of GPUs

Why TensorFlow?

• Most popular Open Source framework for
Deep Learning

• Combines high performance with ability to
tinker with low level model details

• Has end-to-end support from research to
production

Architecture for Distributed TensorFlow

Architecture for Distributed TensorFlow on Mesos

Distributed Training Performance

148.8

932.1

1,769.5

3,179.8

5,297.4

136.0
689.7

1,281.1

2,211.2

4,269.2

0

1,000

2,000

3,000

4,000

5,000

6,000

1 8 16 32 64 1 8 16 32 64

Inception	V3 ResNet-101

Im
ag
es
/s
ec

Training	with	synthetic	data	on	NVIDIA®	Pascal™ GPUs

Distributed	TensorFlow

Distributed Training Performance

1.0

6.3

11.9

21.4

35.6

1.0
5.1

9.4

16.3

31.4

0
5
10
15
20
25
30
35
40

1 8 16 32 64 1 8 16 32 64

Inception	V3 ResNet-101

Sc
al
in
g	
Fa
ct
or

Training	with	synthetic	data	on	NVIDIA®	Pascal™ GPUs

Distributed	TensorFlow

Can We Do Better?

• Improve communication algorithm
• Use RDMA-capable networking (RoCE,

InfiniBand)

Horovod

• Distributed training framework for TensorFlow
• Uses bandwidth-optimal communication

protocols
– Makes use of RDMA (RoCE, InfiniBand) if available

• Seamlessly installs on top of TensorFlow via
pip install horovod

Architecture for Horovod

Patarasuk, P., & Yuan, X. (2009). Bandwidth optimal all-reduce algorithms for clusters of workstations. Journal
of Parallel and Distributed Computing, 69(2), 117-124. doi:10.1016/j.jpdc.2008.09.002

Architecture for Horovod on Mesos

Distributed Training Performance with Horovod

148.8
932.1

1,769.5

3,179.8

5,297.4

136.0
689.7

1,281.1

2,211.2

4,269.2

1,123.9

2,198.8

4,192.4

7,932.1

996.3
1,984.8

3,958.0

7,741.6

0
1,000
2,000
3,000
4,000
5,000
6,000
7,000
8,000
9,000

1 8 16 32 64 1 8 16 32 64

Inception	V3 ResNet-101

Im
ag
es
/s
ec

Training	with	synthetic	data	on	NVIDIA®	Pascal™	GPUs

Distributed	TensorFlow Horovod

Distributed Training Performance with Horovod

1.0
6.3

11.9

21.4

35.6

1.0
5.1

9.4
16.3

31.4

1.0
7.6

14.8

28.2

53.3

1.0
7.3

14.6

29.1

56.9

0

10

20

30

40

50

60

1 8 16 32 64 1 8 16 32 64

Inception	V3 ResNet-101

Sc
al
in
g	
Fa
ct
or

Training	with	synthetic	data	on	NVIDIA®	Pascal™	GPUs

Distributed	TensorFlow Horovod

What About Usability?
import tensorflow as tf
import horovod.tensorflow as hvd

Initialize Horovod
hvd.init()

Pin GPU to be used
config = tf.ConfigProto()
config.gpu_options.visible_device_list = str(hvd.local_rank())

Build model...
loss = ...
opt = tf.train.AdagradOptimizer(0.01)

Add Horovod Distributed Optimizer
opt = hvd.DistributedOptimizer(opt)

Add hook to broadcast variables from rank 0 to all other processes during initialization.
hooks = [hvd.BroadcastGlobalVariablesHook(0)]

Make training operation
train_op = opt.minimize(loss)

The MonitoredTrainingSession takes care of session initialization,
restoring from a checkpoint, saving to a checkpoint, and closing when done
or an error occurs.
with tf.train.MonitoredTrainingSession(checkpoint_dir="/tmp/train_logs",

config=config, hooks=hooks) as mon_sess:
while not mon_sess.should_stop():

Perform synchronous training.
mon_sess.run(train_op)

Giving Back

Horovod is available on GitHub today
https://github.com/uber/horovod

Thank you!

Any questions?

